首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of actin rearrangements mediating platelet activation.   总被引:22,自引:6,他引:16       下载免费PDF全文
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1 micron in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-microns-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-microns-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The neutrophil cytoskeleton, especially the actin network, is thought to play a crucial role in neutrophil migration. However, little is known on the modulation of this network by actin-associated proteins. We have demonstrated the presence of immuno-reactive forms of alpha-actinin (an actin cross-linking and bundling protein) and vinculin (a putative actin-membrane linker) in human neutrophils using specific antibodies to chicken gizzard vinculin and bovine epithelial alpha-actinin. In contrast, talin, another putative actin-membrane linker protein, could not be detected in significant amounts in human neutrophils using a polyclonal antibody raised against chicken gizzard talin, which reacted with human platelet and lymphocyte talin. We have also analyzed the vinculin and alpha-actinin content of Triton X-100 insoluble cytoskeletons, isolated from resting and activated neutrophils. A small amount of alpha-actinin was already associated with the cytoskeleton of resting cells. Addition of chemotactic peptide to the cells rapidly increased the alpha-actinin content of the cytoskeletons 1.6 to 7-fold. This rapid increase was followed by a slower decrease to a lower level which, after 30 min of stimulation, was still significantly higher than that of control cells. The time-course of the association of alpha-actinin with the cytoskeleton paralleled that of actin association. This stimulus-induced rearrangement of cellular alpha-actin may thus play an important role in determining the structure of actin networks in motile neutrophils. Vinculin in contrast could not be detected in significant amounts in the Triton X-100-insoluble neutrophil cytoskeleton, not even after prolonged stimulation of the cells by chemotactic peptide.  相似文献   

3.
The platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa), serves as the receptor for fibrinogen. This study examined what effect GPIIb-IIIa receptor occupancy had on the cytoskeleton of resting and activated platelets. Triton X-100-insoluble residues (cytoskeletons) were isolated from resting washed platelets incubated with either 500 microM RGDS or 500 microM RGES and examined for protein content. RGDS did not increase the amount of GPIIb-IIIa associated with the cytoskeletal residues which sedimented at either 15,800 x g or 100,000 x g. To determine the effect of receptor occupancy on the formation of the activated platelet cytoskeleton, stirred and nonstirred RGDS-treated platelets in plasma were activated with ADP. Triton X-100-insoluble residues were isolated and examined for both protein content and retention of GPIIb-IIIa. Further, morphological studies were performed on the RGDS-ADP-stimulated platelets. The results of this study suggest that 1) RGDS peptide receptor occupancy does not lead to GPIIb-IIIa linkage to the cytoskeleton, 2) ADP-stimulated platelet shape change, polymerization of actin, and association of myosin with the cytoskeleton are unaffected by RGDS peptide receptor occupancy. 3) RGDS inhibits an aggregation-dependent incorporation of ABP, alpha-actinin, talin, and GPIIb-IIIa into the Triton-insoluble residue.  相似文献   

4.
In this paper we demonstrate that cytoskeletons isolated from A431 cells have associated with them high activities of several kinases involved in inositol lipid metabolism, such as phosphatidylinositol kinase, phosphatidylinositol phosphate kinase, and diacylglycerol kinase. In addition also phospholipase C activity was detected on isolated cytoskeletons. Controlled extraction of the cytoskeletons followed by in vitro polymerization of actin demonstrated an association of the kinases to the actin filament system consisting of actin and a number of actin-binding proteins. The cytoskeleton-associated lipid kinase activities were significantly increased upon treatment of intact cells with EGF. These data suggest that the association of the phosphoinositide kinases, diacylglycerol kinase, phospholipase C, and also the EGF receptor to the cytoskeleton may play a role in the efficient signal transduction induced by EGF, by providing a matrix for the various components involved in signal transduction.  相似文献   

5.
The effect of postdecapitation ischemia on the labeling of the free fatty acid pool and their incorporation in lipids was examined during the first 10 min after decapitation in mouse brain that had been injected intracerebrally with either [1-14C]arachidonic acid or [1-14C]palmitic acid. One min after decapitation, animals injected with labeled arachidonic acid exhibited a greatly reduced incorporation of label in brain phospholipids, diglycerides, and triglycerides. When radioactive palmitic acid was used, brain lipids exhibited considerably less inhibition of label. However, a similar degree of inhibition was observed 10 min after decapitation with both fatty acids. At this time, free arachidonic acid had decreased 84% as compared to the 24% decrease observed in the controls, and about 77% of the free palmitic acid remained in the free fatty acid fraction as compared with 30% in the controls. This decreased labeling may reflect ATP shortage that affects the fatty acid activation-reacylation reactions or the enzymes involved. Alternatively, the enhanced endogenous free arachidonic acid may compete with the radiolabeled arachidonic acid resulting in an inhibition of lipid labeling. Inhibition of label may have been greater in radiolabeled arachidonic acid than palmitic because of the larger accumulation of the former endogenous fatty acid during early ischemia.  相似文献   

6.
The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.  相似文献   

7.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

8.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

9.
Phosphatidylinositol (PtdIns)-4- and -3-kinases, PtdIns(4)P-5-kinase, diacylglycerol (DAG) kinase, and PtdIns-phospholipase C were all detected in cytoskeletons of resting human platelets. The total cytoskeletal enzyme activities were greatly increased upon thrombin stimulation of the intact cells. Those reached a maximum after a 60-s stimulation for PtdIns(4)P-5-kinase and phospholipase C, while the other kinases appeared to be slightly delayed. Specific activities were stimulated from about 4-fold (PtdIns-3-kinase) to about 6-fold (PtdIns-4-kinase). Thrombin treatment also promoted a co-extraction of pp60c-src with the cytoskeletons and its disappearance from the Triton X-100 soluble fraction. These results suggest that stimulation of platelets by thrombin causes the association of enzymes responsible for lipid phosphorylation and hydrolysis with the cytoskeletons. This could occur at cytoskeleton anchoring points to the membranes.  相似文献   

10.
R59 022 (6-[2-[4-[(4-fluorophenyl)phenylmethylene]-1- piperidinyl]ethyl]-7-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one) has been suggested as an inhibitor of diacylglycerol kinase in erythrocyte membranes and intact platelets. In the present study, we have investigated the effects of this drug on arachidonic acid mobilization occurring in response to thrombin in intact human platelets. Our results indicate that release of arachidonic acid from membrane phospholipids such as phosphatidylcholine and phosphatidylinositol was severely impaired by R59 022 and the extent of inhibition amounted to 77% and 84%, respectively, as compared to controls. This resulted in a dramatic decrease in the accumulation of free arachidonic acid (labeled/unlabeled) and the percent inhibition of free arachidonic acid accumulation amounted to 80-90% as compared to controls. Furthermore, the drug caused a significant accumulation of thrombin-induced diacylglycerol (labeled) without affecting the formation of labeled phosphatidic acid (PA). We found no significant changes in the radioactivity of either phosphatidylethanolamine or phosphatidylserine following stimulation with thrombin in the presence or absence of R59 022. We conclude that the observed inhibition of thrombin-induced arachidonic acid mobilization by R59 022 may be due to its effects on the activities of diacylglycerol lipase/phospholipase A2. In addition, the failure of further stimulation of thrombin-induced PA by R59 022 may indicate that PA-specific phospholipase A2 is either not involved in the release of arachidonic acid or is not a major source for arachidonic acid release in thrombin-stimulated human platelets. These findings may prove to be important when this drug is used as a selective inhibitor of diacylglycerol kinase.  相似文献   

11.
To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to unlabeled actin. Fluorescently labeled alpha-actinin also bound to ruffles, attachment plaques, cleavage furrows, and stress fibers. The periodicity of fluorescent alpha-actinin along stress fibers was wider in gerbil fibroma cells than it was in PtK2 cells. The fluorescent alpha-actinin binding in cell models could not be blocked by the prior addition of unlabeled alpha-actinin suggesting that alpha-actinin was binding to itself. While there was only slight binding of fluorescent tropomyosin to the cytoskeleton of interphase cells, there was stronger binding in furrow regions of models of dividing cells. The binding of fluorescently labeled tropomyosin could be blocked by prior exposure of the cell models to unlabeled tropomyosin. If unlabeled actin was permitted to polymerize in the stress fibers in cell models, fluorescently labeled tropomyosin stained the fibers. In contrast to the labeled contractile proteins, fluorescently labeled ovalbumin and BSA did not stain any elements of the cytoskeleton. Our results are discussed in terms of the structure and assembly of stress fibers and cleavage furrows.  相似文献   

12.
We describe a method for measuring the release of fatty acids from endogenous substrates of human platelet homogenates and membranes. The method depends on the availability of lipids whose fatty acids are odd-chained and therefore suitable as internal reference compounds that, at the time of lipid extraction, can be added to an incubation to permit subsequent quantification of the content of free fatty acids or fatty acids esterified to specific lipids. We found four types of lipolytic activities in human platelets. In homogenates at pH 4.0 a triglyceride lipase operated as shown by the synchrony of triglyceride degradation and release of glycerol and those fatty acids that are the predominant constituents of triglycerides. However, enough arachidonic acid was released at this pH level to suggest some phospholipid breakdown, since triglycerides hold relatively small amounts of this acid. With membranous preparations, in the alkaline pH range there were two peaks of fatty acid release with accompanying degradation of phospholipids. At pH 8.5, where release of the saturated acids, palmitic and stearic, predominated, their sum was 3.5 times that of arachidonic acid. At pH 9.5 the release of palmitic and stearic acids was only slightly below their peak values; however, the release of arachidonic acid nearly equaled the sum of the saturated acids. Linoleic acid was not released in representative amounts by those reactions that released arachidonic acid, despite the overwhelming propensity of both to be esterified at the 2-position of phospholipids. Pertinently, the choline phospholipids are linoleic-rich and the non-choline phospholipids linoleic-poor, while both have a generous endowment of arachidonic acid. With this in mind, we raise the possibility that the phospholipase A2 of human platelets is an endoenzyme because of its tendency to act on those phospholipids that are thought to comprise the inner layer of the cell membrane.  相似文献   

13.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

14.
We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end-on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles.  相似文献   

15.
It has been postulated that the diacylglycerol lipase pathway is a predominant source of the free arachidonic acid which is released from phospholipids upon the exposure of human platelets to thrombin. The amount of released arachidonic acid and other fatty acids in thrombin-stimulated platelets was determined in the presence of BW755C, the cyclooxygenase/lipoxygenase inhibitor, and in relation to phosphatidylinositol degradation and phosphatidic acid formation. A stearic acid:arachidonic acid molar ratio approaching unity would be expected in the free fatty acid fraction if the latter pathway were a major source of released arachidonic acid. Our results indicate that the diacylglycerol lipase pathway contributes a maximum of 3-4 nmol of arachidonic acid/2 X 10(9) platelets or 12-15% of the total arachidonic acid released (25.8 nmol/2 X 10(9) platelets) upon exposure to thrombin (2 units/ml) for 4 min. Trifluoperazine inhibited most of the thrombin-dependent free arachidonic acid release but only 15% of the absolute loss of arachidonic acid from phosphatidylinositol. Therefore, we conclude that the diacylglycerol lipase pathway represents only a minor source of the free arachidonic acid that is released upon thrombin stimulation of human platelets.  相似文献   

16.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

17.
Long chain fatty acids were known to interfere with the binding between rat uterine estrogen receptors and estradiol. The effect of long chain fatty acids on the binding between rat progesterone receptors and 3H-R5020 was studied. The binding was inhibited by palmitic acid, palmitooleic acid, arachidonic acid and docosahexaenoic acid. Docosahexaenoic acid was the strongest inhibitor and palmitic acid was the weakest inhibitor. The inhibitory effect of palmitic acid and arachidonic acid was dose dependent. In rat uterine cytosols, there existed an arachidonic acid binding factor which was distinct from progesterone receptor. The inhibitory mechanisms of long chain fatty acids was not clear, but the inhibitory effect was stronger if the number of carbon atoms increased with the number of double bonds.  相似文献   

18.
The active association-dissociation of dynamic protein-protein interactions is critical for the ability of the actin cytoskeleton to remodel. To determine the influence of phosphoinositide binding on the dynamic interaction of alpha-actinin with actin filaments and integrin adhesion receptors, fluorescence recovery after photobleaching (FRAP) microscopy was carried out comparing wild-type green fluorescent protein (GFP)-alpha-actinin and a GFP-alpha-actinin mutant with a decreased affinity for phosphoinositides (Fraley, T. S., Tran, T. C., Corgan, A. M., Nash, C. A., Hao, J., Critchley, D. R., and Greenwood, J. A. (2003) J. Biol. Chem. 278, 24039-24045). In fibroblasts, recovery of the mutant alpha-actinin protein was 2.2 times slower than the wild type along actin stress fibers and 1.5 times slower within focal adhesions. FRAP was also measured in U87MG glioblastoma cells, which have higher levels of 3-phosphorylated phosphoinositides. As expected, alpha-actinin turnover for both the stress fiber and focal adhesion populations was faster in U87MG cells compared with fibroblasts with recovery of the mutant protein slower than the wild type along actin stress fibers. To understand the influence of alpha-actinin turnover on the modulation of the actin cytoskeleton, wild-type or mutant alpha-actinin was co-expressed with constitutively active phosphoinositide (PI) 3-kinase. Co-expression with the alpha-actinin mutant inhibited actin reorganization with the appearance of enlarged alpha-actinin containing focal adhesions. These results demonstrate that the binding of phosphoinositides regulates the association-dissociation rate of alpha-actinin with actin filaments and integrin adhesion receptors and that the dynamics of alpha-actinin is important for PI 3-kinase-induced reorganization of the actin cytoskeleton. In conclusion, phosphoinositide regulation of alpha-actinin dynamics modulates the plasticity of the actin cytoskeleton influencing remodeling.  相似文献   

19.
The interaction of fatty acids with bovine vitamin D-binding protein (DBP) was studied using a partition equilibrium method. This protein has one high affinity site for binding of fatty acids with an association constant Ka = 7 x 10(5) M-1 for palmitic acid and Ka = 6 x 10(5) M-1 for arachidonic acid. Competition experiments showed that palmitic acid hardly competes with 25-hydroxycholecalciferol for binding to DBP. However, arachidonic acid showed comparatively a stronger competition for binding to this protein. The great difference in competition of palmitic and arachidonic acids with 25-hydroxycholecalciferol may be related to changes in DBP conformation promoted by the binding of different ligands.  相似文献   

20.
The interaction of alpha-actinin with lipid films and actin filaments was investigated. First alpha-actinin was incorporated in lipid films at the air/water interface. Injection of alpha-actinin into the subphase of a lipid monolayer led to a significant increase of the surface pressure only for lipid films consisting of a mixture of a negatively charged lipid with a high proportion of diacylglycerol. These alpha-actinin-containing films were transferred onto silanized quartz slides. Photobleaching experiments in the evanescent field allowed quantification of the lateral number density of the lipid-bound alpha-actinin. In combination with the area increase from the monolayer experiments, the photobleaching measurements suggest that alpha-actinin is incorporated into the lipid film in such a way that actin binding sites are accessible from the bulk phase. Binding experiments confirmed that the alpha-actinin selectively binds actin filaments in this configuration. We also showed that, in contrast to actin filaments which are adsorbed directly onto planar surfaces, the alpha-actinin-bound actin filaments are recognized and cleaved by the actin-severing protein gelsolin. Thus we have constructed an in vitro system which opens new ways for investigations of membrane-associated actin-binding proteins and of the physical behavior of actin filaments in the close neighborhood to membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号