首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antipsychotic drugs are effective for the treatment of schizophrenia. However, the functional consequences and subcellular sites of their accumulation in nervous tissue have remained elusive. Here, we investigated the role of the weak-base antipsychotics haloperidol, chlorpromazine, clozapine, and risperidone in synaptic vesicle recycling. Using multiple live-cell microscopic approaches and electron microscopy of rat hippocampal neurons as well as in vivo microdialysis experiments in chronically treated rats, we demonstrate the accumulation of the antipsychotic drugs in synaptic vesicles and their release upon neuronal activity, leading to a significant increase in extracellular drug concentrations. The secreted drugs exerted an autoinhibitory effect on vesicular exocytosis, which was promoted by the inhibition of voltage-gated sodium channels and depended on the stimulation intensity. Taken together, these results indicate that accumulated antipsychotic drugs recycle with synaptic vesicles and have a use-dependent, autoinhibitory effect on synaptic transmission.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage‐specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage‐specific DNA methylation. How such lineage‐ and gene‐specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild‐type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.  相似文献   

13.
14.
* Our view of genes involved in rice disease resistance is far from complete. Here we used a gene-for-gene relationship corresponding to the interaction between atypical avirulence gene ACE1 from Magnaporthe grisea and rice resistance gene Pi33 to better characterize early rice defence responses induced during such interaction. * Rice genes differentially expressed during early stages of Pi33/ACE1 interaction were identified using DNA chip-based differential hybridization and QRT-PCR survey of the expression of known and putative regulators of disease resistance. * One hundred genes were identified as induced or repressed during rice defence response, 80% of which are novel, including resistance gene analogues. Pi33/ACE1 interaction also triggered the up-regulation of classical PR defence genes and a massive down-regulation of chlorophyll a/b binding genes. Most of these differentially expressed genes were induced or repressed earlier in Pi33/ACE1 interaction than in the gene-for-gene interaction involving Nipponbare resistant cultivar. * Besides demonstrating that an ACE1/Pi33 interaction induced classical and specific expression patterns, this work provides a list of new genes likely to be involved in rice disease resistance.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号