首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Fas (APO-1/CD95) is well known as a death receptor, its stimulation occasionally fails to induce apoptosis in malignant cells. On the contrary, Fas is reported to advance the cell cycle in cancer cells. Therefore, we investigated roles of Fas in cell growth and apoptosis using human lung cancer cell lines. Fas was localized in the cytoplasm in exponentially growing cells, whereas only confluent cells expressed Fas on the cell membrane. A stimulation of confluent cells by either of EGF, IGF-I or VEGF induced once a decrease in Fas expression level and its sequential recovery. Fas expression levels in confluent cells were negatively correlated with cell doubling times (r=0.757, p=0.0088). Fas remained on the cell membrane of IgM-treated cells even after the growth factor stimulation, leading to apoptosis with abnormal mitosis, whereas the same stimulation induced Fas internalization in IgG(1)-treated cells. From these results, we suggest that Fas remaining on the cell membrane amplifies to induce apoptosis. Conversely, Fas internalization may enable cancer cells to escape from apoptosis. Our results suggest that growth factor may contribute to the resistance of cancer cells to Fas-mediated apoptosis in an autocrine or paracrine fashion.  相似文献   

2.
3.
It has been reported dysregulation of certain microRNAs (miRNAs / miRs) is involved in tumorigenesis. However, the miRNAs associated with radiocarcinogenesis remain undefined. In this study, we validated the upregulation of miR-467a in radiation-induced mouse thymic lymphoma tissues. Then, we investigated whether miR-467a functions as an oncogenic miRNA in thymic lymphoma cells. For this purpose, we assessed the biological effect of miR-467a on thymic lymphoma cells. Using miRNA microarray, we found four miRNAs (miR-467a, miR-762, miR-455 and miR-714) were among the most upregulated (>4-fold) miRNAs in tumor tissues. Bioinformatics prediction suggests miR-467a may potentially regulate apoptosis pathway via targeting Fas and Bax. Consistently, in miR-467a-transfected cells, both proliferation and colony formation ability were significantly increased with decrease of apoptosis rate, while, in miR-467a-knockdown cells, proliferation was suppressed with increase of apoptosis rate, indicating that miR-467a may be involved in the regulation of apoptosis. Furthermore, miR-467a-knockdown resulted in smaller tumors and better prognosis in an in vivo tumor-transplanted model. To explain the mechanism of apoptosis suppression by miR-467a, we explore the expression of candidate target genes (Fas and Bax) in miR-467a-transfected relative to negative control transfected cells using flow cytometry and immunoblotting. Fas and Bax were commonly downregulated in miR-467a-transfected EL4 and NIH3T3 cells, and all of the genes harbored miR-467a target sequences in the 3''UTR of their mRNA. Fas and Bax were actually downregulated in radiation-induced thymic lymphoma tissues, and therefore both were identified as possible targets of miR-467a in thymic lymphoma. To ascertain whether downregulation of Fas and / or Bax is involved in apoptosis suppression by miR-467a, we transfected vectors expressing Fas and Bax into miR-467a-upregulated EL4 cells. Then we found that both Fas- and Bax-overexpression decreased cell viability with increase of apoptosis rate, indicating that downregulation of Fas and Bax may be at least partly responsible for apoptosis suppression by miR-467a. These data suggest that miR-467a may have oncogenic functions in radiation-induced thymic lymphoma cells and that its increased expression may confer a growth advantage on tumor cells via aberrant expression of Fas and Bax.  相似文献   

4.
Tetracyclines have been used in the treatment of chronic inflammatory diseases associated with local infiltration of inflammatory cells and matrix destruction as observed in rheumatoid arthritis and periodontal disease. Fas/Fas ligand (FasL)-mediated apoptosis plays an important role in maintaining T lymphocyte homeostasis and modulating immune response. The present study demonstrates that doxycycline inhibits Jurkat T lymphocyte proliferation and induces apoptosis. The phytohemagglutinin (PHA)-activated Jurkat cells are more susceptible to doxycycline-induced apoptosis. Furthermore, doxycycline-induced apoptosis is associated with increased Fas/FasL expression in Jurkat cells. The increase of apoptosis in Jurkat cells treated with doxycycline is consistent with the increase of FasL expression. These results suggest that doxycycline may downregulate the inflammatory process in certain diseases by eliminating activated T lymphocytes through Fas/FasL-mediated apoptosis.  相似文献   

5.
Mutations of ras are tumor-initiating events for many cell types, including thyrocytes. To explore early consequences after oncogenic Ras activation, we developed a doxycycline-inducible expression system in rat thyroid PCCL3 cells. Beginning 3-4 days after H-Ras(v12) expression, cells underwent apoptosis. The H-Ras(v12) effects on apoptosis were decreased by a mitogen-activated protein kinase kinase (MEK1) inhibitor and recapitulated by doxycycline-inducible expression of an activated MEK1 mutant (MEK1(S217E/S221E)). As reported elsewhere, acute expression of H-Ras(v12) also induces mitotic defects in PCCL3 cells through ERK (extracellular ligand-regulated kinase) activation, suggesting that apoptosis may be secondary to DNA damage. However, acute activation of SAPK/JNK (stress-activated protein kinase/Jun N-terminal kinase) through acute expression of Rac1(v12) also triggered apoptosis, without inducing large-scale genomic abnormalities. H-Ras(v12)-induced apoptosis was dependent on concomitant activation of cAMP by either TSH or forskolin, in a protein kinase A-independent manner. Thus, coactivation of cAMP-dependent pathways and ERK or JNK (either through H-Ras(v12), Rac1(v12), or MEK1(S217E/S221E)) is inconsistent with cell survival. The fate of thyrocytes within the first cell cycles after expression of oncogenic Ras is dependent on ambient TSH levels. If both cAMP and Ras signaling are simultaneously activated, most cells will die. Those that survive will eventually lose TSH responsiveness and/or inactivate the apoptotic cascade through secondary events, thus enabling clonal expansion.  相似文献   

6.
Fas engagement accelerates liver regeneration after partial hepatectomy   总被引:8,自引:0,他引:8  
Fas (CD95) is a receptor involved in induction of apoptotic cell death of Fas-bearing cells, including hepatocytes and T cells. Injection of Fas-specific antibodies into mice leads to fulminant hepatic failure and death. Fas also transduces growth-promoting signals in proliferating T cells, fibroblasts and some tumor cells. Here we show that partial hepatectomy, which triggers the immediate onset of liver regeneration, protected mice against the lethal effects of Fas-specific antibodies and prevented hepatocyte apoptosis in response to Fas engagement in vivo. Furthermore, Fas engagement accelerated liver regeneration after partial hepatectomy. Liver regeneration kinetics were delayed in mutant mice with decreased cell surface Fas expression (lpr mice). In contrast, regeneration was not delayed in lpr-cg mutant mice, which have a Fas mutation that prevents Fas-induced death but not Fas-dependent proliferative stimulation. Our results indicate that Fas engagement on cells in regenerating or healing tissues may promote cell growth.  相似文献   

7.
8.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

9.
Human thymocytes at several stages of maturation express Fas, yet resist apoptosis induction through its ligation. A proximal step in apoptotic signaling through Fas is implicated in this resistance, as these cells undergo normal levels of apoptosis induction after exposure to tumor necrosis factor-alpha. We studied the Fas receptors expressed in human thymocytes to search for mechanisms of receptor-mediated inhibition of Fas signaling in these cells. We describe here a unique, membrane-bound form of Fas receptor that contained a complete extracellular domain of Fas but that lacked a death domain due to alternative splicing of exon 7. This Fas decoy receptor (FDR) was shown to have nearly wild-type ability to bind native human Fas ligand and was expressed predominantly at the plasma membrane. Unlike soluble forms of Fas receptor, FDR dominantly inhibited apoptosis induction by Fas ligand in transfected human embryonic kidney cells. Titration of FDR in Fas-expressing cells suggests that FDR may operate through the formation of mixed receptor complexes. FDR also dominantly inhibited Fas-induced apoptosis in Jurkat T cells. In mixing experiments with wild-type Fas, FDR was capable of inhibiting death signaling at molar ratios less than 0.5, and this relative level of FDR:wild type message was observed in at least some thymocytes tested. The data suggest that Fas signal pathways in primary human cells may be regulated by expression of a membrane-bound decoy receptor, analogous to the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by decoy receptors.  相似文献   

10.
Immunohistochemical study on Fas and Fas ligand in skin wound healing   总被引:4,自引:0,他引:4  
An immunohistochemical study on the expression of Fas and Fas ligand (Fas L) was performed in order to examine the role of apoptosis through Fas–Fas L in mouse skin wound healing. After a 1-cm-long incision in the central dorsum skin, mice were sacrificed at intervals ranging from 0.5 to 240h, followed by the sampling of wound margin. The expression of Fas and Fas L in the wound margins and in uninjured skin controls was studied using frozen sections. In uninjured skin controls, a very weak expression of Fas and Fas L was detected immunohistochemically in hair follicles, sebaceous glands and epidermal cells. In wounded specimens, polymorphonuclear cells and inflammatory mononuclear ones (round-shaped and spindle-shaped types) were evident. A single immunostaining showed that Fas or Fas L was detectable in inflammatory mononuclear cells involved in the skin wound healing process. Double immunostaining for Fas and Fas L revealed that inflammatory mononuclear cells co-expressed both antigens. In situ TUNEL combined with immunostaining showed that the inflammatory mononuclear cells expressing Fas or Fas L and the polymorphonuclear cells were TUNEL-stained, although neither Fas nor Fas L was detected in the polymorphonuclear cells. The number of TUNEL-positive, inflammatory mononuclear cells expressing Fas or Fas L per 0.01×0.01cm2 was counted. The average number of 10 randomly selected microscope fields reached a peak at the fibro-proliferative phase of wound healing. These results indicate that apoptosis through Fas and Fas L may play an important role for reducing the cellularity during skin wound healing in mice.  相似文献   

11.
Alveolar epithelial apoptosis is an important feature of hyperoxia-induced lung injury in vivo and has been described in the early stages of bronchopulmonary dysplasia (chronic lung disease of preterm newborn). Molecular regulation of hyperoxia-induced alveolar epithelial cell death remains incompletely understood. In view of functional involvement of Fas/FasL system in physiological postcanalicular type II cell apoptosis, we speculated this system may also be a critical regulator of hyperoxia-induced apoptosis. The aim of this study was to investigate the effects of hyperoxia on apoptosis and apoptotic gene expression in alveolar epithelial cells. Apoptosis was studied by TUNEL, electron microscopy, DNA size analysis, and caspase assays. Fas/FasL expression was determined by Western blot analysis and RPA. We determined that in MLE-12 cells exposed to hyperoxia, caspase-mediated apoptosis was the first morphologically and biochemically recognizable mode of cell death, followed by necrosis of residual adherent cells. The apoptotic stage was associated with a threefold upregulation of Fas mRNA and protein expression and increased susceptibility to direct Fas receptor activation, concomitant with a threefold increase of FasL protein levels. Fas gene silencing by siRNAs significantly reduced hyperoxia-induced apoptosis. In murine fetal type II cells, hyperoxia similarly induced markedly increased Fas/FasL protein expression, confirming validity of results obtained in transformed MLE-12 cells. Our findings implicate the Fas/FasL system as an important regulator of hyperoxia-induced type II cell apoptosis. Elucidation of regulation of hyperoxia-induced lung apoptosis may lead to alternative therapeutic strategies for perinatal or adult pulmonary diseases characterized by dysregulated type II cell apoptosis.  相似文献   

12.
13.
Oligomerization of Fas receptor by its ligand, FasL, activates a signaling cascade that leads to apoptosis of Fas bearing cells. Interestingly, many epithelia coexpress Fas and FasL, yet FasL does not trigger Fas present on the same or neighboring cells to induce spontaneous apoptosis. Here, we show that Fas and FasL are segregated from each other to different cellular compartments in kidney epithelial MDCK cells. While Fas is restricted to the basolateral surface, FasL is sequestered to an intracellular compartment and, a lesser extent, the apical surface. This spatial segregation of Fas and FasL may explain how epithelial cells can constitutively express a functional Fas pathway but avoid auto- or paracrine cell death. Compromising this spatial segregation in physiological or pathological situations may play a so far underestimated role in initiating apoptosis of epithelial cells.  相似文献   

14.
Mithramycin A (MMA, trade name Plicamycin) can facilitate TNFα- (Tumor Necrosis Factor) and Fas ligand-induced apoptosis. Besides, several drugs play their anticancer effect through Fas apoptotic pathway. So we investigated the effect of MMA on Fas signaling. In this study we show that MMA induces apoptosis in Fas sensitive Jurkat cells and Fas resistant KG1a cells. This effect involves Fas apoptotic pathway: cell exposure to MMA leads to Fas clustering at the cell surface, DISC (Death Inducing Signaling Complex) formation and caspase cleavage. This phenomenon is independent of Fas ligand/Fas interaction and blockade of Fas death pathway partially inhibits MMA-induced apoptosis. Moreover the activation of Fas apoptotic pathway by MMA is correlated to the modulation of c-FlipL expression. Finally, pre-treatment with sub-lethal doses of MMA sensitizes KG1a cells to chemotherapeutic agents. Thus all these results may have important implications to improve clinical treatments.  相似文献   

15.
OBJECTIVE: To understand the role of apoptosis through Fas/Fas ligand (FasL) interaction in the pathogenesis of silicosis, we examined the expression of Fas antigen, FasL and apoptosis in bronchoalveolar lavage fluid lymphocytes obtained from patients with silicosis. MATERIALS AND METHODS: Ten patients with silicosis, and 10 healthy controls were studied. Non-adherent cells were separated and analysed by cytometry for the expression of Fas antigen, FasL, and the co-expression of Fas/FasL. By double staining, we studied the FasL expression on CD4, CD8, CD56 and CD45RO-positive cells. DNA fragmentation was investigated by the terminal deoxy(d) UTP nick end labelling (TUNEL) method. RESULTS: We have found Fas and FasL expression in silicosis patients to be significantly higher than those in healthy controls. Interestingly, 6-18% of lymphocytes from silicosis patients co-expressed Fas and FasL. In silicosis patients, FasL was highly expressed on CD4+, CD56+ and CD45RO+ bronchoalveolar lavage cells. Fas antigen expressing cells showed DNA fragmentation characteristic for apoptosis. CONCLUSION: FasL was significantly expressed on cytotoxic effector and memory cells. The Fas/FasL system is implicated in the inflammatory process observed in silicosis patients.  相似文献   

16.
Interferon-γ (IFN-γ) is considered essential for the regulation of anti-tumor reactions as it sensitizes Fas-related apoptosis in HT29 cells, but the mechanism is unclear. In the current study, our data demonstrated that IFN-γ stimulation and Fas activation suppressed Dicer processing and let-7 microRNA biogenesis, while let-7 microRNA strongly inhibited Fas expression by directly targeting Fas mRNA. Accordingly, our results indicate that Fas and let-7 microRNAs form a double-negative feedback loop in IFN-γ and Fas induced apoptosis in colon carcinoma cell line HT29, which may be an important synergistic mechanism in anti-tumor immune response. We also found that a let-7 microRNA inhibitor increased Fas expression and sensitized cells to Fas-related apoptosis, which may have future implications in colon carcinoma therapy.  相似文献   

17.
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.  相似文献   

18.
To date, two major apoptotic pathways, the death receptor and the mitochondrial pathway, have been well documented in mammalian cells. However, the involvement of these two apoptotic pathways, particularly the death receptor pathway, in transforming growth factor-beta 1 (TGF-beta 1)-induced apoptosis is not well understood. Herein, we report that apoptosis of human gastric SNU-620 carcinoma cells induced by TGF-beta 1 is caused by the Fas death pathway in a Fas ligand-independent manner, and that the Fas death pathway activated by TGF-beta 1 is linked to the mitochondrial apoptotic pathway via Bid mediation. We showed that TGF-beta 1 induced the expression and activation of Fas and the subsequent caspase-8-mediated Bid cleavage. Interestingly, expression of dominant negative FADD and treatment with caspase-8 inhibitor efficiently prevented TGF-beta 1-induced apoptosis, whereas the treatment with an activating CH11 or a neutralizing ZB4 anti-Fas antibody, recombinant Fas ligand, or Fas-Fc chimera did not affect activation of Fas and the subsequent induction of apoptosis by TGF-beta 1. We further demonstrated that TGF-beta 1 also activates the mitochondrial pathway showing Bid-mediated loss of mitochondrial membrane potential and subsequent cytochrome c release associated with the activations of caspase-9 and the effector caspases. Moreover, all these apoptotic events induced by TGF-beta 1 were found to be effectively inhibited by Smad3 knockdown and also completely abrogated by Smad7 expression, suggesting the involvement of the Smad3 pathway upstream of the Fas death pathway by TGF-beta 1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号