首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
M P Lefranc 《Biochimie》1988,70(7):901-908
The human T-cell Rearranging Gamma genes or T-cell Receptor Gamma (TRG) chain genes, like those encoding the T-cell Receptor (TcR) alpha and beta polypeptides, undergo rearrangements specifically in T-cells. The human TRG locus which has been mapped to chromosome 7 (7p15) is composed of 2 constant region genes (TRGC), 5 joining segments (TRGJ) and at least 14 variable gamma genes (TRGV). 8 variable genes are functional and belong to 4 different subgroups. Based on restriction fragments, the TRG rearrangements can be assigned to given V and J segments, in normal T-cells, T leukemias and lymphomas. The product of the rearranged TRG gene is the gamma chain which is expressed at the surface of a subset of CD3+4-8- T lymphocytes lacking the conventional receptor alpha beta. Structural differences exist between the different 'gamma T-cell receptors', the gamma and delta polypeptides being disulfide or non-disulfide linked. Although the TRG+ cells display a cytolytic activity, their precise function remains to be elucidated.  相似文献   

3.
gammadelta T cells commonly account for 0.5%-5% of human (gammadelta low species) circulating T cells, whereas they are very common in chickens, and they may account for >70% of peripheral cells in ruminants (gammadelta high species). We have previously reported the ovine TRG2@ locus structure, the first complete physical map of any ruminant animal TCR locus. Here we determined the TRG1@ locus organization in sheep, reported all variable (V) gamma gene segments in their germline configuration and included human and cattle sequences in a three species comparison. The TRG1@ locus spans about 140 kb and consists of three clusters named TRG5, TRG3, and TRG1 according to the constant (C) genes. The predicted tertiary structure of cattle and sheep V proteins showed a remarkably high degree of conservation between the experimentally determined human Vgamma9 and the proteins belonging to TRG5 Vgamma subgroup. However systematic comparison of primary and tertiary structure highligthed that in Bovidae the overall conformation of the gammadelta TCR, is more similar to the Fab fragment of an antibody than any TCR heterodimer. Phylogenetic analysis showed that the evolution of cattle and sheep V genes is related to the rearrangement process of V segments with the relevant C, and consequentely to the appartenence of the V genes to a given cluster. The TRG cluster evolution in cattle and sheep pointed out the existence of a TRG5 ancient cluster and the occurrence of duplications of its minimal structural scheme of one V, two joining (J), and one C.  相似文献   

4.
We describe nine T cell gamma variable (V) gene segments isolated from human DNA. These genes, which fall into two subgroups, are mapped in two DNA regions covering 54 kb and probably represent the majority of human V gamma genes. One subgroup (V gamma I) contains eight genes, consisting of four active genes and four pseudogenes. The single V gamma II gene is potentially active. Sequence analysis of the V gamma I genes shows variation clustered in hypervariable regions, but somatic variability is restricted to N-region diversity. Studies on rearrangement in T cell lines and in thymic DNA show that major rearrangements can be observed that are attributable to the five active V gamma genes. In addition, human cells with the phenotype of helper T cells can undergo productive V gamma-J gamma joining.  相似文献   

5.
The human T-cell receptor gamma (TRG) genes   总被引:7,自引:0,他引:7  
The human T-cell receptor gamma (TRG) chain genes, like those encoding the T-cell receptor alpha- and beta-polypeptides, undergo rearrangements specifically in T cells. The human TRG locus, which has been completely mapped, is composed of two constant region genes (TRGC), five joining segments (TRGJ) and at least 14 variable gamma-genes (TRGV). Eight variable genes are functional and belong to four different subgroups. The product of the rearranged TRG gene is the gamma-chain which is expressed, along with the delta-chain, at the surface of a subset of T lymphocytes. Although some gamma delta + cells display a cytolytic activity, their precise function remains to be elucidated.  相似文献   

6.
7.
Studies here describe expression and sequence of several new bovine T cell receptor gamma (TRG) genes to yield a total of 11 TRG variable (TRGV) genes (in eight subgroups) and six TRG constant (TRGC) genes. Publicly available genomic sequences were annotated to show their placement. Homologous TRG genes in cattle and sheep were assigned, using four accepted criteria. New genes described here include the bovine TRGC6, TRGV2, and TRGV4, homologues of ovine TRGC4, TRGV2, and TRGV4, respectively. The bovine Vγ7 and BTGV1 clones (previously TRGV4 and TRGV2, respectively) were reassigned to new subgroups TRGV7 and TRGV8, respectively, with approval by the IMGT Nomenclature Committee. Three TRGV subgroups (TRGV5, TRGV6, and TRGV8) were further designated as TRGV5-1 and TRGV5-2, TRGV6-1 and TRGV6-2, and TRGV8-1 and TRGV8-2 because each subgroup is comprised of two mapped genes. The complete sequence of bovine TRGC5 is also reported, for which a limited number of nucleotides was previously available, and shown to be most closely related to ovine TRGC5. Analysis of circulating γδ T cells revealed that rearrangement of TRGV genes with TRGC genes is largely dictated by their proximity within one of the six genomic V-J-C cassettes, with all TRG genes expressed by bovine peripheral blood γδ T cells. Cattle are useful models for γδ T cell biology because they have γδ T cells that respond to isopentenylpyrophosphate (IPP) antigens, while mice do not, and some bovine TRGV genes cluster closely with human genes.Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank database under the accession numbers DQ179591, DQ179592, DQ179593, and DQ179594.  相似文献   

8.
S Huck  M P Lefranc 《FEBS letters》1987,224(2):291-296
In the human T-cell rearranging gamma (TRG gamma) locus, five joining (J) segments have been identified: J1, J2 and three additional segments JP, JP1 and JP2. We report the sequence of the germline JP1 segment and compare it with the other human and mouse J gamma segments. We also demonstrate that rearrangements to the three additional J gamma segments can be identified by hybridization of the KpnI digests to the J gamma 1 probe pH60. Since rearrangements to J1 or J2 can be assigned, using the same pH60 probe, to one of the nine variable (V) gamma genes known to rearrange [(1987) EMBO J. 6, 1945-1950], our results show that a unique probe can detect all the TRG gamma rearrangements and be particularly useful for assessing the preferential usage of V gamma and J gamma segments in the TRG gamma-expressing cells.  相似文献   

9.
Summary The human T-cell receptor gamma gene region spans 160 kb genomic DNA. Restriction fragment length polymorphisms (RFLPs) have been previously documented for the constant region (TRGC) genes, the joining (TRGJ) segments and the variable (TRGV) genes. We have recently defined the alleles of the T-cell receptor gamma V, J and C genes and we have described seven haplotypes of the V gamma subgroup I genes characterized either by RFLPs or by deletion or insertion of V gamma genes. The number of VI genes may vary from 7 to 10 per haploid genome, the 9-gene haplotype being the most frequent. Allelic fragments can unambiguously characterize the TRGC2 gene with duplication or triplication of the exon 2. These alleles and haplotypes have been analyzed in four different populations (French, Lebanese, Tunisian and Black African). In this paper, we compare these allele and haplotype frequencies with those found in a Chinese population and we describe new TRGV allelic restriction fragments found only in the Chinese samples. These results and the previous data demonstrate the flexibility of the human T cell receptor gamma locus and the importance of unequal crossing-overs in the evolution of that locus. Moreover, they underline the importance of studying these polymorphisms in population genetics.  相似文献   

10.
马俊平  杨犀  律娜  刘飞  陈燕  朱宝利 《遗传》2015,37(6):568-574
动物T细胞受体(T cell receptor,TCR)基因由多个不同的高度同源的基因家族组成,通过全基因组测序很难获得准确的基因序列和排列位置。文章通过在NCBI中发布的鸡TCR的γ链(TCRγ或TRG)基因片段序列定位了鸡TRG基因所在区域,并确定了与鸡TRG基因位点对应的细菌人工染色体(BAC)克隆(CH261-174P24)。对该克隆进行高通量的重新测序和组装后,得到含有10个scaffolds的基因组草图,较完整地覆盖了鸡TRG基因位点及两侧区域。通过PCR扩增和测序证明了scaffold内部结构的正确性,校正了鸡参考基因组TRG基因位点一个可变基因和一个缺口序列(gap)附近各一处错误序列,以及可变基因区多处序列错误。文章通过校正鸡参考基因组TRG基因位点的序列,为鸡TRA/D和TRB基因位点的基因组序列分析提供了新方法。  相似文献   

11.
In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδT cell receptors. Human, mouse, and dog display a low peripheral blood γδ T cell percentage, while sheep accounts for a high proportion of γδ T lymphocytes. In all these species, the genomic organization of the T cell receptor gamma (TRG) locus is well known. To gain further insight into the evolutionary significance of the γδ T cell lineage, the present study has defined the genomic organization of the TRG locus in rabbit (Oryctolagus cuniculus), another mammalian γδ high species, as deduced from the genome assembly. The rabbit TRG locus spans about 70?kb and consists of ten TRGV, two TRGJ genes, and one TRGC gene located 5' to 3' in the locus. When we compared the rabbit sequence with the human, mouse, sheep, and dog counterparts, a higher identity with human as well as sheep with respect to mouse and dog was evident, providing that in the different mammalian species, the TRG locus appears to have evolved independently without any correlation with the γδ condition. The complete sequence of the rabbit TRG locus described here provides also a resource for supporting functional studies especially in the context of the γδ T cell function.  相似文献   

12.
Diversity, rearrangement, and expression of murine T cell gamma genes   总被引:52,自引:0,他引:52  
R D Garman  P J Doherty  D H Raulet 《Cell》1986,45(5):733-742
Although the T cell gamma genes are similar in many respects to T cell receptor alpha and beta genes, earlier studies suggested that only a single gamma variable (V gamma) gene is expressed in mature T cells. We report the isolation and characterization of three new rearranged V gamma genes from murine fetal thymocytes. Although each of the new V gamma gene rearrangements is present in fetal thymocytes, two of them are undetectable in mature T cells. The levels of mRNA corresponding to each type of V gamma gene rearrangement in mature T cells are dramatically diminished compared with those in fetal thymocytes, although the abundance of two of the rearranged genes is increased in mature T cells. Our results demonstrate that there is significant expressed variability of gamma genes in immature T cells. Furthermore, the dynamics of gamma gene rearrangement and expression support the idea that gamma genes function in immature T cells.  相似文献   

13.
As part of the ongoing work in our laboratory on the structural organization of the human V kappa locus we screened cosmid libraries with V kappa gene probes and obtained numerous V kappa gene-containing cosmid clones. Several genomic regions of the V kappa locus were reconstructed from overlapping cosmid inserts and were extended by one step of chromosomal walking. The regions that are called Wa, Wb, Oa, Ob and Ob' comprise about 370 kb (10(3) bases) of DNA and contain 24 V kappa genes and pseudogenes. The V kappa genes belong to the three dominant subgroups (V kappa I, V kappa II, V kappa III) and are arranged to form mixed clusters with members of the different subgroups being intermingled with each other. The distances between the genes range from 1 to 15 kb. Three genes of the Wa and Wb regions that were sequenced turned out to be pseudogenes. Terminal parts of the regions Wa and Ob that do not contain V kappa genes of one of the known subgroups may represent extended spacer regions within the V kappa locus. Wa and Wb are duplicated regions located at different positions of the locus. Region Wb was found to comprise inversely repeated sections of at least 14 kb each that contain V kappa genes oriented in opposite polarity. This finding is consistent with inversion-deletion models of V-J joining; it also shows that the V kappa locus contains not only unique and duplicated but also triplicated parts. The data on the W and O regions are discussed together with those on the L regions and on other regions established in our laboratory. Although the picture of the human V kappa locus with, to date, about 70 different non-allelic V kappa genes is still incomplete, some general features with respect to the organization of the genes and the limited duplication of genomic regions have emerged.  相似文献   

14.
The role of a T gamma gene product in the immune response is not known. To investigate the participation of the T gamma gene in functional T cells, we estimated its variable (V gamma) gene diversity among mature polyclonal T cells and assayed for in vivo selection of rearranged V gamma genes during the immune response. In this study, we present evidence that functionally mature, normal human T cells have rearranged their T gamma genes but display a limited range of gene rearrangement choices. In contrast to clonal T cell neoplasms, an invariant array of seven T gamma gene rearrangements was found to be proportionately distributed within normal polyclonal T cell populations, as well as in benign polyclonal T cell proliferations incited by a wide variety of pathological conditions. Findings presented here indicate that the likelihood of rearrangement of each human V gamma gene may be fixed. Lack of selection of V gamma genes during the mature T cell immune response implies a limited role of any single V gamma gene at this stage of T cell development.  相似文献   

15.
The nature of TCR gamma and delta gene rearrangements in 4- to 6-week-old scid thymocytes was examined by using the polymerase chain reaction technique, cloning, and DNA sequencing. Analysis of 78 sequences indicates that TCR gamma and delta gene rearrangements in scid mice generally resemble those in thymocytes from normal young adult mice. V gamma 1, V gamma 2, and V gamma 5 rearrangements are heterogeneous, with extensive N region addition and nucleotide excision from the recombining coding segments. In addition, homogeneous and fetal-like V gamma 3, V gamma 4, and V delta 1 rearrangements are observed. These rearrangements are currently difficult to interpret but may be significant with respect to whether certain homogeneous joints in normal mice are due to cellular selection or to the rearrangement process. scid TCR gamma and delta gene nucleotide sequences also reveal direct V-J delta joining, inter-(V-J-C gamma) cluster joining, and the possibility of inversional rearrangement at the gamma locus. Short sequence homologies may contribute to V(D)J recombination and to the rescue of blocked coding joints.  相似文献   

16.
The human T cell receptor gamma chain locus encodes the immunoglobulin-like gamma chain polypeptide and spans a distance of approximately 150 kb. Previous studies have not precisely characterized the interval separating variable regions from joining--constant regions which is excised during gamma gene rearrangement. We report a series of overlapping cosmids which includes the portion of the gamma chain locus beginning with V2 and extends to the second exon of C2. Sixteen kilobases separate the most 3' variable region gene, V4, from the most 5' joining segment, J1.1.  相似文献   

17.
Two unusual human immunoglobulin V kappa genes   总被引:3,自引:0,他引:3  
The V kappa genes A10 and A14 which have been previously localized within the human kappa locus were analysed now. A10 hybridizes under stringent conditions only weakly or not at all to probes characteristic for the four V kappa subgroups. According to their DNA sequences and the derived amino-acid sequences A10 and A14 do not fit well into the subgroup classification. They seem to be about as closely related to the subgroup I and III genes and less related to those of subgroups II and IV. Hybridization experiments indicate that A10 and A14 belong to a small V kappa gene family. After discussing the various features of the sequences we suggest neither to assign A10 and A14 to one of the existing subgroups nor to establish a new one but to apply to them the subgroup designation N which may be changed when all V kappa genes are known and can be classified together.  相似文献   

18.
The variability, arrangement, and rearrangement of immunoglobulin genes   总被引:3,自引:0,他引:3  
The multiplicity of heavy-chain variable-region (VH) genes in mouse and human DNA has been estimated using a mouse heavy-(H) chain cDNA clone. We found about 10 hybridization components in mouse DNA and about 20 components in human DNA. Cross-hybridization studies of variable region (V) genes indicate that these components represent the numbers of genes within the VH subgroups of each of these species. The arrangement and rearrangement of the H-chain gamma subclasses have been studied in order to assess possible mechanisms of the H-chain switch. Evidence has been found for rearrangement events involving the gamma 2a and gamma 2b constant-region (CH) genes in DNA from cells making IgG2a and IgG2b respectively. In addition we found that cells making IgG2a lack detectable genes for gamma1 and gamma 2b. Both sets of observations are discussed in relation to H-chain diversity and the switch.  相似文献   

19.
20.
The molecular organization of rearranged T-cell receptor (TCR) gamma genes intraepithelial lymphocytes (IEL) was studied in athymic radiation chimeras and was compared with the organization of gamma gene rearrangements in IEL from thymus-bearing animals by polymerase chain reaction and by sequence analyses of DNA spanning the junction of the variable (V) and joining (J) genes. In both thymus-bearing mice and athymic chimeras, IEL V-J gamma-gene rearrangements occurred for V gamma 1.2, V gamma 2, and V gamma 5 but not for V gamma 3 or V gamma 4. Sequence analyses of cloned V-J polymerase chain reaction-amplified products indicated that in both thymus-bearing mice and athymic chimeras, rearrangement of V gamma 1.2 and V gamma 5 resulted in in-frame as well as out-of-frame genes, whereas nearly all V gamma 2 rearrangements were out of frame from either type of animal. V-segment nucleotide removal occurred in most V gamma 1.2, V gamma 2, and V gamma 5 rearrangements; J-segment nucleotide removal was common in V gamma 1.2 but not in V gamma 2 or V gamma 5 rearrangements. N-segment nucleotide insertions were present in V gamma 1.2, V gamma 2, and V gamma 5 IEL rearrangements in both thymus-bearing mice and athymic chimeras, resulting in a predominant in-frame sequence for V gamma 5 and a predominant out-of-frame sequence for V gamma 2 genes. These findings demonstrate that (i) TCR gamma-gene rearrangement occurs extrathymically in IEL, (ii) rearrangements of TCR gamma genes involve the same V gene regardless of thymus influence; and (iii) the thymus does not determine the degree to which functional or nonfunctional rearrangements occur in IEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号