首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin endoperoxide H synthase (PGHS) catalyzes the oxidation of arachidonate to prostaglandin H(2). We have previously synthesized and chemically characterized nitroarachidonic acid (AANO(2)), a novel anti-inflammatory signaling mediator. Herein, the interaction of AANO(2) with PGHS was analyzed. AANO(2) inhibited oxygenase activity of PGHS-1 but not PGHS-2. AANO(2) exhibited time- and concentration-dependent inhibition of peroxidase activity in both PGHS-1 and -2. The plot of k(obs) versus AANO(2) concentrations showed a hyperbolic function with k(inact) = 0.045 s(-1) and K(i)(*app) = 0.019 μM for PGHS-1 and k(inact) = 0.057 s(-1) and K(i)(*app) = 0.020 μM for PGHS-2. Kinetic analysis suggests that inactivation of PGHS by AANO(2) involves two sequential steps: an initial reversible binding event (described by K(i)) followed by a practically irreversible event (K(i)(*app)) leading to an inactivated enzyme. Inactivation was associated with irreversible disruption of heme binding to the protein. The inhibitory effects of AANO(2) were selective because other nitro-fatty acids tested, such as nitrooleic acid and nitrolinoleic acid, were unable to inhibit enzyme activity. In activated human platelets, AANO(2) significantly decreased PGHS-1-dependent thromboxane B(2) formation in parallel with a decrease in platelet aggregation, thus confirming the biological relevance of this novel inhibitory pathway.  相似文献   

2.
Prostaglandin endoperoxide H synthases 1 and 2 (PGHS-1 and -2) are the major targets of nonsteroidal anti-inflammatory drugs. Both isozymes are integral membrane proteins but lack transmembrane domains. X-ray crystallographic studies have led to the hypothesis that PGHS-1 and -2 associate with only one face of the membrane bilayer through a novel, monotopic membrane binding domain (MBD) that is comprised of four short, consecutive, amphipathic alpha-helices (helices A-D) that include residues 74-122 in ovine PGHS-1 (oPGHS-1) and residues 59-108 in human PGHS-2 (hPGHS-2). Previous biochemical studies from our laboratory showed that the MBD of oPGHS-1 lies somewhere between amino acids 25 and 166. In studies reported here, membrane-associated forms of oPGHS-1 and hPGHS-2 were labeled using the hydrophobic, photoactivable reagent 3-trifluoro-3-(m-[(125)I]iodophenyl)diazirine, isolated, and cleaved with AspN and/or GluC, and the photolabeled peptides were sequenced. The results establish that the MBDs of oPGHS-1 and hPGHS-2 reside within residues 74-140 and 59-111, respectively, and thus provide direct provide biochemical support for the hypothesis that PGHS-1 and -2 do associate with membranes through a monotopic MBD. We also prepared HelA, HelB, and HelC mutants of oPGHS-1, in which, for each helix, three or four hydrophobic residues expected to protrude into the membrane were replaced with small, neutral residues. When expressed in COS-1 cells, HelA and HelC mutants exhibited little or no catalytic activity and were present, at least in part, as misfolded aggregates. The HelB mutant retained about 20% of the cyclooxygenase activity of native oPGHS-1 and partitioned in subcellular fractions like native oPGHS-1; however, the HelB mutant exhibited an extra site of N-glycosylation at Asn(104). When this glycosylation site was eliminated (HelB/N104Q mutation), the mutant lacked cyclooxygenase activity. Thus, our mutational analyses indicate that the amphipathic character of each helix is important for the assembly and folding of oPGHS-1 to a cyclooxygenase active form.  相似文献   

3.
Acetylation of Ser-530 of sheep prostaglandin endoperoxide (PGG/H) synthase by aspirin causes irreversible inactivation of the cyclooxygenase activity of the enzyme. To determine the catalytic function of the hydroxyl group of Ser-530, we used site-directed mutagenesis to replace Ser-530 with an alanine. Cos-1 cells transfected with expression vectors containing the native (Ser-530) or mutant (Ala-530) cDNAs for sheep PGG/H synthase expressed comparable cyclooxygenase and hydroperoxidase activities. Km values for arachidonate (8 microM) and ID50 values for reversible inhibition by the cyclooxygenase inhibitors, flurbiprofen (5 microM), flufenamate (20 microM), and aspirin (20 mM), were also the same for both native and mutant PGG/H synthases; however, only the native enzyme was irreversibly inactivated by aspirin. Thus, the "active site" Ser-530 of PGG/H synthase is not essential for catalysis or substrate binding. Apparently, acetylation of native PGG/H synthase by aspirin introduces a bulky sidechain at position 530 which interferes with arachidonate binding. In related studies, a cDNA for mouse PGG/H synthase was cloned and sequenced. A sequence of 35 residues with Ser-530 at the midpoint was identical in the two proteins. Thus, Ser-530 does lie in a highly conserved region, probably involved in cyclooxygenase catalysis. Sequence comparisons of mouse and sheep PGG/H synthase also provided information about the heme-binding site of the enzyme. The sheep HYPR sequence (residues 274-277), which had been proposed to form a portion of the distal heme-binding site, is not conserved in the mouse PGG/H synthase, suggesting that this region is not the distal heme-binding site. One sequence, TIWLREHNRV (residues 303-312 of the sheep enzyme), is very closely related to the sequence TLW(L)LREHNRL common to thyroid peroxidase and myeloperoxidase. The histidine in this latter sequence is the putative axial heme ligand of these peroxidases. We suggest that the histidine (His-309) of sheep PGG/H synthase sequence is the axial heme ligand of this enzyme.  相似文献   

4.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

5.
Arg-120 is located near the mouth of the hydrophobic channel that forms the cyclooxygenase active site of prostaglandin endoperoxide H synthases (PGHSs)-1 and -2. Replacement of Arg-120 of ovine PGHS-1 with a glutamine increases the apparent Km of PGHS-1 for arachidonate by 1,000-fold (Bhattacharyya, D. K., Lecomte, M., Rieke, C. J., Garavito, R. M., and Smith, W. L. (1996) J. Biol. Chem. 271, 2179-2184). This and other evidence indicate that the guanido group of Arg-120 forms an ionic bond with the carboxylate group of arachidonate and that this interaction is an important contributor to the overall strength of arachidonate binding to PGHS-1. In contrast, we report here that R120Q human PGHS-2 (hPGHS-2) and native hPGHS-2 have very similar kinetic properties, but R120L hPGHS-2 catalyzes the oxygenation of arachidonate inefficiently. Our data indicate that the guanido group of Arg-120 of hPGHS-2 interacts with arachidonate through a hydrogen bond rather than an ionic bond and that this interaction is much less important for arachidonate binding to PGHS-2 than to PGHS-1. The Km values of PGHS-1 and -2 for arachidonate are the same, and all but one of the core residues of the active sites of the two isozymes are identical. Thus, the results of our studies of Arg-120 of PGHS-1 and -2 imply that interactions involved in the binding of arachidonate to PGHS-1 and -2 are quite different and that residues within the hydrophobic cyclooxygenase channel must contribute more significantly to arachidonate binding to PGHS-2 than to PGHS-1. As observed previously with R120Q PGHS-1, flurbiprofen was an ineffective inhibitor of R120Q hPGHS-2. PGHS-2-specific inhibitors including NS398, DuP-697, and SC58125 had IC50 values for the R120Q mutant that were up to 1,000-fold less than those observed for native hPGHS-2; thus, the positively charged guanido group of Arg-120 interferes with the binding of these compounds. NS398 did not cause time-dependent inhibition of R120Q hPGHS-2, whereas DuP-697 and SC58125 were time-dependent inhibitors. Thus, Arg-120 is important for the time-dependent inhibition of hPGHS-2 by NS398 but not by DuP-697 or SC58125.  相似文献   

6.
The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.  相似文献   

7.
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 has quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study.  相似文献   

8.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

9.
10.
In order to investigate the mode of interaction between the N-quarternized cytosine base and the aromatic amino acid, the crystal structure of the 3-methyl-cytidine-5'-monophosphate:tryptamine complex was analyzed by X-ray diffraction. The complex crystals were stabilized by extensive hydrogen bond formations in which eight independent water molecules per complex pair participated. A prominent stacking interaction, characterized by a parallel alignment of both rings with a separation distance of ca. 3.4 A, was observed between the cytosine base and the indole ring. Combining the present results with X-ray crystallographic data on the adenine--and guanine--aromatic amino acid interactions, we summarize the structural characteristics observed in the stacking interaction of the N-quarternized nucleic acid base with the aromatic amino acid and discuss their biological implications, especially in connection with the significance of N-protonation of nucleic acid base for selective recognition by protein.  相似文献   

11.
12.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

13.
Long-chain fatty acids can be metabolized to C(n)(-1) aldehydes by alpha-oxidation in plants. The reaction mechanism of the enzyme has not been elucidated. In this study, a complete nucleotide sequence of fatty acid alpha-oxygenase gene in rice plants (Oryza sativa) was isolated. The deduced amino acid sequence showed some similarity with those of mammalian prostaglandin H synthases (PGHSs). The gene was expressed in Escherichia coli and purified to apparently homogeneous state. It showed the highest activity with linoleic acid and predominantly formed 2-hydroperoxide of the fatty acid (C(n)), which is then spontaneously decarboxylated to form corresponding C(n)(-1) aldehyde. With linoleic or linoleic acids as a substrate, rice alpha-oxygenase formed no product having a lambda(max) at approximately 234 nm, which indicated that the enzyme could not oxygenize the pentadiene system in the substrate. The spectroscopic feature of the purified enzyme in its ferrous state is similar to that of mammalian PGHS, whereas that of dithionite-reduced state showed significant difference. Site-directed mutagenesis revealed that His-158, Tyr-380, and Ser-558 were essential for the alpha-oxygenase activity. These residues are conserved in PGHS and known as a heme ligand, a source of a radical species to initiate oxygenation reaction and a residue involved in substrate binding, respectively. This finding suggested that the initial step of the oxygenation reaction in alpha-oxygenase has a high similarity with that of PGHS. The rice alpha-oxygenase activity was inhibited by imidazole but hardly inhibited by nonsteroidal anti-inflammatory drugs, such as aspirin, ibuprofen, and flurbiprofen, which are known as typical PGHS inhibitors. In addition, peroxidase activity could not be detected with alpha-oxygenase when palmitic acid 2-hydroperoxide was used as a substrate. From these findings, the catalytic resemblance between alpha-oxygenase and PGHS seems to be evident, although there still are differences in their substrate recognitions and peroxidation activities.  相似文献   

14.
Kinetic studies and analysis of the products formed by native and mutant forms of ovine prostaglandin endoperoxide H synthase-1 (oPGHS-1) have suggested that arachidonic acid (AA) can exist in the cyclooxygenase active site of the enzyme in three different, catalytically competent conformations that lead to prostaglandin G2 (PGG2), 11R-hydroperoxyeicosatetraenoic acid (HPETE), and 15R,S-HPETE, respectively. We have identified an oPGHS-1 mutant (V349A/W387F) that forms predominantly 11R-HPETE. Thus, the preferred catalytically competent arrangement of AA in the cyclooxygenase site of this double mutant must be one that leads to 11-HPETE. The crystal structure of Co3+-protoporphyrin IX V349A/W387F oPGHS-1 in a complex with AA was determined to 3.1 A. Significant differences are observed in the positions of atoms C-3, C-4, C-5, C-6, C-10, C-11, and C-12 of bound AA between native and V349A/W387F oPGHS-1; in comparison, the positions of the side chains of cyclooxygenase active site residues are unchanged. The structure of the double mutant presented here provides structural insight as to how Val349 and Trp387 help position C-9 and C-11 of AA so that the incipient 11-peroxyl radical intermediate is able to add to C-9 to form the 9,11 endoperoxide group of PGG2. In the V349A/W387F oPGHS-1.AA complex the locations of C-9 and C-11 of AA with respect to one another make it difficult to form the endoperoxide group from the 11-hydroperoxyl radical. Therefore, the reaction apparently aborts yielding 11R-HPETE instead of PGG2. In addition, the observed differences in the positions of carbon atoms of AA bound to this mutant provides indirect support for the concept that the conformer of AA shown previously to be bound within the cyclooxygenase active site of native oPGHS-1 is the one that leads to PGG2.  相似文献   

15.
X-ray crystallographic analysis of swine pancreas -amylase   总被引:1,自引:0,他引:1  
  相似文献   

16.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP), which enzymatically removes a single adenine base from a conserved, surface exposed loop sequence of ribosomal rRNA. We now present unprecedented experimental evidence that PAP can release not only adenine but guanine as well from Escherichia coli rRNA, albeit at a rate 20 times slower than for adenine. We also report X-ray structure analysis and supporting modeling studies for the interactions of PAP with guanine. Our modeling studies indicated that PAP can accommodate a guanine base in the active site pocket without large conformational changes. This prediction was experimentally confirmed, since a guanine base was visible in the active site pocket of the crystal structure of the PAP-guanine complex.  相似文献   

17.
We have used in vitro mutagenesis to introduce a six residue histidine sequence (His-tag) near the amino terminal end of the human PGHS-1 and -2 and have expressed these proteins using the baculovirus system. The His-tags are located one and two amino acids beyond the signal peptide cleavage sites of PGHS-1 and PGHS-2, respectively, positions that do not affect their activities or sensitivities to nonsteroidal anti-inflammatory drugs. When expressed in sf-21 cells, the His-tagged enzymes have K(m) values for arachidonate, and IC(50) values for inhibition by nonsteroidal anti-inflammatory drugs that are similar to values reported for the nontagged enzymes. The His-tags allowed for purification of the PGHSs by a simplified protocol involving nickel-affinity and anion exchange FPLC chromatography. The specific activities and recoveries for the purified enzymes were as good or better than those reported previously for purification of the non-tagged PGHS. These baculovirus constructs should provide a convenient source for pharmacologic and biophysical studies that require large scale preparation of human PGHSs.  相似文献   

18.
19.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.  相似文献   

20.
The present study was designed to determine whether platelets transfer arachidonic acid or prostaglandin endoperoxide intermediates to macrophages which may be further metabolized into cyclooxygenase products. Adherent peritoneal macrophages were prepared from rats fed either a control diet or an essential fatty acid-deficient diet, and incubated with a suspension of washed rat platelets. Macrophage cyclooxygenase metabolism was inhibited by aspirin. In the presence of a thromboxane synthetase inhibitor, 7-(1-imidazolyl)heptanoic acid, immunoreactive 6-ketoprostaglandin F1 alpha formation was significantly increased 3-fold. Since this increase was greater (P less than 0.01) than that seen with either 7-(1-imidazolyl)heptanoic acid-treated platelets or aspirin-treated macrophages alone, these results indicate that shunting of endoperoxide from platelets to macrophages may have occurred. In further experiments, macrophages from essential fatty acid-deficient rats were substituted for normal macrophages. Essential fatty acid-deficient macrophages, depleted of arachidonic acid, produced only 2% of the amount of eicosanoids compared to macrophages from control rats. When platelets were exposed to aspirin, stimulated with thrombin, and added to essential fatty acid-deficient macrophages, significantly more immunoreactive 6-ketoprostaglandin F1 alpha was formed than in the absence of platelets. This increased macrophage immunoreactive 6-ketoprostaglandin F1 alpha synthesis, therefore, must have occurred from platelet-derived arachidonic acid. These data indicate that in vitro, in the presence of an inhibition of thromboxane synthetase, prostaglandin endoperoxides, as well as arachidonic acid, may be transferred between these two cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号