首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

2.
The structure of the major protein of the pellicular membrane of Leishmania tropica was investigated. This protein is composed of two polypeptides, of ca. 50,000 d molecular weight, that were found to cross-react immunologically with the α and β subunits of pig brain tubulin. The polypeptides and pig brain tubulin subunits were partially digested with S. aureus V8 protease, and the peptides obtained analysed by SDS-polyacrylamide gel electrophoresis. A comparison of the patterns showed that the β subunits of Leishmania and pig tubulin have very similar primary structures, while the α subunits have evolved divergently. These experiments demonstrate that the major polypeptides found in the pellicular membrane of L. tropica are α and β subunits of tubulin. Immuno-electron microscopy indicates that the tubulin is located in the microtubules associated with the pellicular membrane of Leishmania. Arrays of microtubules were prepared by nonionic detergent treatment of the cells and observed by electron microscopy after negative staining. Optical diffraction reveals a 5 nm spacing between protofilaments in the microtubule and a 4 nm axial periodicity corresponding to the tubulin subunits. The pitch of the shallow left-hand three-start helix is 12°. A distance of 47 nm separates each microtubule from the next. These data show that the dimensions and supramolecular organization of the tubulin subunits in the microtubules are identical in the pellicular membrane of L. tropica and in mammalian brain.  相似文献   

3.
4.
Dawson PJ  Lloyd CW 《The EMBO journal》1985,4(10):2451-2455
Tubulin has been purified from carrot suspension cells by ion-exchange chromatography and assembled into microtubules in the presence of 20 microM taxol. One-dimensional SDS-PAGE suggested that the alpha band migrated faster than the beta band (as has been established for some lower eukaryotic tubulins) and this heterology with brain tubulins was confirmed by peptide mapping. When subjected to two-dimensional gel electrophoresis, the plant tubulins could be separated into multiple alpha and beta isotypes. Immunoblotting, using monoclonal anti-tubulins, confirmed that the tubulin isotypes identified in taxol microtubules represent all of the tubulins present in homogenates of unsynchronised log-phase carrot suspension cells. All identified tubulins are therefore assembly-competent under these conditions. Plant cells can contain four different microtubule arrays, but cells arrested in G0/G1 contain only cortical microtubule arrays; such cells, however, exhibit the same tubulin profile as non-synchronised cells, thereby showing no restriction in the number of subunits during this phase of the cell cycle.  相似文献   

5.
Radio-iodination of tubulin can be achieved by Bolton-Hunter reagent both in the absence and presence of microtubule associated proteins. Specific radioactivities as high as 400 Ci/mmole tubulin dimer can be obtained, i.e. an average of 0.2 molecule of reagent is bound per molecule of tubulin. About 80 % of the [125I]- labelled tubulin keeps its ability to assemble in microtubules and polymerizes with the same critical concentration as the native tubulin, which makes the method adequate for preparing tracer tubulin useful for in vivo and in vitro studies. Both α and β subunits are labelled, 60 % of the radiolabel being bound to the β subunit.  相似文献   

6.
Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and β tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.  相似文献   

7.
Developmental and Biochemical Analysis of Chick Brain Tubulin Heterogeneity   总被引:3,自引:0,他引:3  
Tubulin, isolated from brain tissue of chicks at different stages during late embryonic and early post-hatched development by ion-exchange chromatography and by in vitro microtubule reassembly, was analyzed by high-resolution isoelectric focusing and by two-dimensional polyacrylamide gel electrophoresis. Similar results were obtained with tubulins purified by the two methods. Sixteen isoelectric species of tubulin that differ in apparent net charge under denaturing conditions were detected by isoelectric focusing. By two-dimensional polyacrylamide gel electrophoresis, the chick brain tubulins were resolved into at least seven forms of alpha and 10 forms of beta tubulin. The number and relative proportions of the multiple brain tubulins were modulated during development. Since there are only four alpha tubulin and four beta tubulin genes in chickens, posttranslational modification of the tubulins must play a prominent role in the heterogeneity. Analysis of isotubulin distributions through cycles of microtubule assembly and disassembly indicated that the tubulins differ very little, if at all, in their capacity to assemble into microtubules. Therefore, the chemical differences that distinguish the multiple tubulins have very little structural impact on the protein surface areas involved in microtubule formation. Partial fractionation of the multiple tubulins during ion-exchange chromatography was observed, suggesting that it may be possible to isolate individual native tubulin variants for biochemical studies.  相似文献   

8.
RNA splicing: three themes with variations   总被引:38,自引:0,他引:38  
T R Cech 《Cell》1983,34(3):713-716
We have isolated the four separate segments of chicken DNA which contain sequence homology to β tubulin. With the exception of a fifth region of DNA which appears to contain only a 5′ fragment of β gene, these four cloned sequences represent all of the β tubulin encoding DNA in the chicken. Each gene is very similar in structure, containing three or four small intervening sequences clustered in the 5′ portion of the coding region. Using RNAs prepared from a variety of cell lines and tissues, we have found five different mRNAs which carry β tubulin sequences, two of which are encoded by the same gene. Three of these mRNAs are unexpectedly long (between 3500 and 4000 bases). However, these large mRNAs do give authentic β tubulin translation products. Overall, we conclude that each of the four β tubulin genes is a functional gene which is expressed in a specific program during differentiation. These data strongly suggest that four β tubulins are necessary for proper microtubule function in vertebrates.  相似文献   

9.
The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α‐ and β‐tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post‐translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post‐translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α‐ and β‐tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post‐translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a ‘code’ that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non‐motor), thus creating the physical support for various microtubule functions.  相似文献   

10.
A set of four monoclonal antibodies against tubulin (TU-01, TU-02, TU-03, and TU-04) were produced using pig brain microtubule protein as antigen. Their characterization shows that all recognize antigenic determinants located on the tubulin alpha-subunit. However, peptide mapping of isolated alpha-tubulin, followed by immunoblotting with the monoclonal antibodies, shows that the antigenic determinants are located on different peptide fragments in at least three cases. The immunoreactivity with tubulins from different cells and tissues, ranging from eukaryotic microorganisms to man, was studied by immunoblotting and immunofluorescence. The antigenic determinants recognized by the antibodies are not uniformly distributed but, in some instances, are absent from tubulins of lower eukaryotic cells. These antibodies also make it possible to distinguish between different sets of microtubules within individual cells. Antigenically different microtubules are particularly evident in mouse spermatozoa and in some protozoa (T. vaginalis, H. muscarum, L. tropica, N. gruberi) possessing different sets of microtubules with different functions. These monoclonal antibodies can clearly identify the heterogeneity of tubulin or microtubules both from different organisms and within the same cell.  相似文献   

11.
Tubulin was purified from the brain of the catfishHeteropneustes fossilis by cycles of temperature-dependent assembly and disassembly. Fish tubulin assembles into microtubules in the absence of high molecular weight microtubule associated proteins. Its subunits comigrate with goat brain α andβ tubulin subunits and is composed of 4 major α andβ tubulins each as analyzed by isoelectric focusing and two dimensional gel electrophoresis. Peptide mapping showed it to be very similar to goat brain tubulin. Polymerization of catfish brain tubulin occurs optimally between 18–37°C and the critical protein concentrations of assembly at 18°C and 37°C are the same, as opposed to mammalian brain tubulins.  相似文献   

12.
Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.  相似文献   

13.
The multitubulin hypothesis proposes that chemically distinct tubulins may possess different polymerization properties or may form functionally different microtubules. To test this hypothesis, we have examined the functional properties and the structures of singlet-specific nonneural and neural tubulins from Antarctic fishes. Tubulins were purified from eggs of Notothenia coriiceps neglecta, and from brain tissues of N. coriiceps neglecta or N. gibberifrons, by DEAE ion-exchange chromatography and cycles of microtubule assembly/disassembly. At temperatures between 0 and 20 degrees C, each of these tubulins polymerized efficiently in vitro to yield microtubules of normal morphology. Critical concentrations for polymerization of egg tubulin ranged from 0.057 mg/ml at 3 degrees C to 0.002 mg/ml at 18 degrees C, whereas those for brain tubulin at like temperatures were 4-10-fold larger. Polymerization of both tubulins was entropically driven, but the apparent standard enthalpy and entropy changes for microtubule elongation by egg tubulin (delta Happ0 = +33.9 kcal/mol, delta Sapp0 = +151 entropy units) were significantly greater than values observed for brain tubulin (delta Happ0 = +26.5 kcal/mol, delta Sapp0 = +121 entropy units). Egg tubulin was composed of approximately six alpha and two beta chains and lacked the beta III isotype, whereas brain tubulin was more complex (greater than or equal to 10 of each chain type). Furthermore, egg alpha tubulins were more basic, and their carboxyl termini more resistant to cleavage by subtilisin, than were the alpha chains of brain. We conclude that brain and egg tubulins from the Antarctic fishes are functionally distinct in vitro, due either to qualitative or quantitative differences in isotypic composition, to differential posttranslational modification of shared isotypes, or to both.  相似文献   

14.
An extensive structural analysis of microtubules assembled in vitro has been carried out using electron microscopy in conjunction with computer analysis based on Fourier transforms and helical diffraction theory. Microtubules assembled in vitro displayed a range of numbers of protofilaments from 12 to 16, with 14 the most abundant (84% in one large sampling). In almost all structures observed protofilaments are staggered to form a characteristic 3-start shallow helix. The presence of the 3-start helix was confirmed by fiber tilting experiments to correct the effects of microtubule flattening. Since α and β tubulin subunits alternate along the protofilaments, continuous helical lattices can be constructed with interactions between adjacent protofilaments involving unlike subunits (type A lattice) or like subunits (type B lattice). However, the 14-protofilament, 3-start microtubules are incompatible with either the A or B-type continuous helical lattice. Evidence is presented which indicates that lattice discontinuities are present which generate features of both the A and B-types, with the latter predominating.  相似文献   

15.
Tubulin from eggs and embryos of the Mexican axolotl was characterized by electrophoresis and colchicine binding. In urea-polyacrylamide gel electrophoresis, soluble axolotl egg tubulin migrated as two bands, identical to tubulins from sea urchin sperm and Drosophila eggs. However, in SDS-containing gels, on which the α and β subunits of standard tubulins were well resolved, axolotl egg tubulin migrated as a single band with an apparent molecular weight of 53,500. The method of disruption of the eggs affected both yield of tubulin from vinblastine sulfate precipitates and stability of the colchicine binding activity. The colchicine binding activity of soluble tubulin from gently disrupted eggs was specific and of high affinity, with properties similar to those reported for other tubulins. The tubulin pool in unfertilized eggs was determined to be approximately 2 μg/egg; the level decreased 20% after initiation of cleavage and then remained constant through development to postneurula stages. The colchicine binding activity of soluble tubulin from embryos was much less stable than that of unfertilized eggs and decreased further during development. No differences were found in properties of tubulin from eggs of several strains of normally pigmented axolotls; however, tubulin from albino eggs showed slightly different properties in both electrophoresis and colchicine binding. The colchicine binding activity of soluble tubulin accounts for only half the total activity in axolotl eggs; they possess, in addition, a particulate nontubulin colchicine binding activity.  相似文献   

16.
17.
D. B. Murphy 《Protoplasma》1988,145(2-3):176-181
Summary Vertebrate cells contain biochemical and genetic isotypes of tubulin which are expressed in unique combinations in different tissues and cell types. To determine if mixtures of tubulin isotypes assemblein vitro to form different classes of microtubules, we analyzed the composition of microtubule copolymers assembled from mixtures of chicken brain and erythrocyte tubulin. During microtubule elongation brain tubulin assembled onto the ends of microtubules faster than erythrocyte tubulin, resulting in copolymers with continually changing ratios of isotypes along their lengths. Unlike examples of microtubule assembly where the rate of polymerization depends on the association rate constant (k+) and the subunit concentration, the rate and extent of sorting in copolymers appear to depend on the dissociation rate constant (k), which governs the rate at which subunits are released from tubulin oligomers and microtubules and thereby made available for reassembly into copolymers. The type of microtubule seed used to initiate elongation was also found to influence the composition of copolymers, indicating that polymerization favors association of subunits of the same isotype.  相似文献   

18.
We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (-2 to +2 degrees C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from alpha- and beta-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish beta-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain beta tubulins. For the nine fish alpha-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish alpha tubulins were generally longer than those of adult rat brain alpha chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of alpha isoforms and a reduction in the number of beta isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.  相似文献   

19.
《The Journal of cell biology》1983,97(4):1011-1019
We used three antitubulin antibodies to localize Dictyostelium tubulin subunits on two-dimensional polyacrylamide gels by Western blotting. All three antibodies, a polyclonal antibody against sea urchin alpha- and beta-tubulin and two monoclonal antibodies against yeast alpha- tubulin, recognize the same set of polypeptides with a molecular weight of 55,000 while focusing at a pH far more basic than all other tubulins. Each antibody specifically stains the microtubule system of slime mold amoebae by indirect immunofluorescence. The microtubule system can be isolated as a major component of the amoeba cytoskeleton, and these preparations are greatly enriched for the presumptive tubulin subunits. The microtubules of these cytoskeletons are resistant to being depolymerized by millimolar concentrations of calcium, while they retain their cold sensitivity. Comparison of peptide maps of slime mold and brain alpha-tubulins indicates that the proteins are related but not identical. Possible explanations for these unusual characteristics are discussed.  相似文献   

20.
Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号