首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interneuronal network that produces local bending in the leech is distributed, in the sense that most of the interneurons involved are activated in all forms of local bending, even those in which their outputs would produce inappropriate movements. Such networks have been found to control a number of different behaviors in a variety of animals. This article reviews three issues: the physiological and modeling observations that led to the conclusion that local bending in leeches is controlled by a distributed system; what distributed processing means for this and other behaviors; and why the leech interneuronal network may have evolved to be distributed in the first place. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild‐type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude‐weighted mean fluorescence lifetime (τm) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.  相似文献   

3.
The time course of the reaction to axotomy in the leech AP cell was determined by measuring the duration of the spontaneous spikes at different times after the operation. The axotomy performed by section of the segmental roots containing the AP axon induced an increase of the spike duration, which persisted over 30 days. A different time course was found when the axotomy was performed by nerve crush: the changes in duration of the spontaneous spikes, which occurred during the early 2 weeks, were significantly reduced afterwards. Dye staining of some cells axotomized by crushing revealed that the reversion of the changes, which had been set up by axotomy, was in some cases concomitant with the reconnection between proximal and distal axon stumps. The section of a single axonal branch was never sufficient to affect the membrane properties of the AP cells. It is concluded that the changes observed in axotomized AP cells are not produced by simple axonal injury and that the maintainance of normal properties in the somatic membrane requires the presence of at least part of the distal axon arborization.  相似文献   

4.
《Cell reports》2023,42(5):112476
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

5.
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3′,5′-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN–optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma.This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

6.
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771–792, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Extracellular matrix (ECM) molecules extracted from the leech central nervous system (CNS) provide substrates that induce extensive growth of processes of identified leech nerve cells in culture. Two ECM molecules, laminin and tenascin, have been identified. The laminin-like molecule has been purified and shown to be a cross-shaped molecule similar to vertebrate laminin with subunits of 340, 220, 180, and 160 kD. Purified laminin as a substrate induces rapid outgrowth of Retzius (R) and Anterior Pagoda (AP) cells in culture. The tenascin molecule has been partially purified. In electronmicrographs, leech tenascin, like vertebrate tenascin, has six arms of equal size joined in a central globule. Highly enriched fractions of leech tenascin induce rapid and extensive outgrowth of Retzius and AP cells in culture. Substrate molecules not only induce outgrowth of processes but also affect the growth patterns of individual nerve cells. Neurites are straight with few branches in laminin, but curved with profuse branches on tenascin. During regeneration of the CNS in the animal, laminin appears at new sites associated with growth cones. The appearance of laminin correlates with the accumulation of microglial cells. Thus, ECM molecules with growth-promoting activity for leech nerve cells in vitro appear to be involved in inducing regeneration and allowing the neurites to reconnect with former targets. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
As neurons grow to their targets their processes elongate, branch and form specialized endings into which are inserted appropriate ion channels. Our aim has been to analyse the role of the extracellular matrix molecules laminin and tenascin in inducing growth and in determining the form and physiological properties of growing neurites. A preparation in which development and regeneration can be followed at the cellular and molecular level in the animal and in tissue culture is the central nervous system (CNS) of the leech. In leech extracellular matrix (ECM) both laminin and tenascin are present; the molecules are structurally similar but not identical to their vertebrate counterparts. Tenascin extracted from leech ECM shows a typical hexabrachial structure whereas laminin shows a typical cruciform structure in rotary shadowed preparations. Leech laminin purified by means of a monoclonal antibody is a molecule of about 1000 kDa, with a polypeptide composition of 340, 200, 180 and 160 kDa. Substrates that contain tenascin or laminin produce rapid and reliable outgrowth of neurites by identified cells. A remarkable finding is that the outgrowth pattern produced by an individual neuron depends in part on its identity, in part on the substrate upon which it is placed. For example, a Retzius cell grows in a quite different configuration and far more rapidly on laminin substrate than does another type of neuron containing the same transmitter (serotonin); and the pattern of outgrowth of the Retzius cell is different on laminin and on the plant lectin Con A (concanavalin A). Thus Con A induces the growth of processes that are shorter, thicker, more curved and contain fewer calcium channels than those grown on laminin. To determine whether laminin can also influence neurite outgrowth in the animal, immunocytological techniques have been used to follow its distribution in the extracellular matrix of normal, developing and regenerating leech CNS. In adult leeches neuronal processes in the CNS are not in contact with laminin which is confined to the surrounding extracellular matrix. In embryos however, laminin staining appears between ganglionic primordia along the pathways that neurons will follow. Similarly, after injury to the adult CNS, laminin accumulates at the very sites at which sprouting and regeneration begin. How the laminin becomes redistributed to appear in the region of injury has not yet been established. Together these findings suggest a key role for laminin and for other extracellular matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Supertree methods are used to construct a large tree over a large set of taxa from a set of small trees over overlapping subsets of the complete taxa set. Since accurate reconstruction methods are currently limited to a maximum of a few dozen taxa, the use of a supertree method in order to construct the tree of life is inevitable. Supertree methods are broadly divided according to the input trees: When the input trees are unrooted, the basic reconstruction unit is a quartet tree. In this case, the basic decision problem of whether there exists a tree that agrees with all quartets is NP-complete. On the other hand, when the input trees are rooted, the basic reconstruction unit is a rooted triplet and the above decision problem has a polynomial time algorithm. However, when there is no tree which agrees with all triplets, it would be desirable to find the tree that agrees with the maximum number of triplets. However, this optimization problem was shown to be NP-hard. Current heuristic approaches perform min cut on a graph representing the triplets inconsistency and return a tree that is guaranteed to satisfy some required properties. In this work, we present a different heuristic approach that guarantees the properties provided by the current methods and give experimental evidence that it significantly outperforms currently used methods. This method is based on a divide and conquer approach, where the min cut in the divide step is replaced by a max cut in a variant of the same graph. The latter is achieved by a lightweight semidefinite programming-like heuristic that leads to very fast running times  相似文献   

10.
Transected axons are often assumed to seal by collapse and fusion of the axolemmal leaflets at their cut ends. Using photomicroscopy and electronmicroscopy of fixed tissues and differential interference contrast and confocal fluorescence imaging of living tissues, we examined the proximal and distal cut ends of the pseudomyelinated medial giant axon of the earthworm, Lumbricus terrestris, at 5–60 min post-transection in physiological salines and Ca2+-free salines. In physiological salines, the axolemmal leaflets at the cut ends do not completely collapse, much less fuse, for at least 60 min post-transection. In fact, the axolemma is disrupted for 20–100 μm from the cut end at 5–60 min post-transection. However, a barrier to dye diffusion is observed when hydrophilic or styryl dyes are placed in the bath at 15–30 min post-transection. At 30–60 min post-transection, this barrier to dye diffusion near the cut end is formed amid an accumulation of some single-layered and many multilayered vesicles and other membranous material, much of which resembles delaminated pseudomyelin of the glial sheath. In Ca2+-free salines, this single and multilayered membranous material does not accumulate, and a dye diffusion barrier is not observed. These and other data are consistent with the hypothesis that plasmalemmal damage in eukaryotic cells is repaired by Ca2+-induced vesicles arising from invaginations or evaginations of membranes of various origin which form junctional contacts or fuse with each other and/or the plasmalemma. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 945–960, 1997  相似文献   

11.
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.  相似文献   

12.
Summary The Herring bodies in the posterior lobe of the bovine hypophysis are very large (2–600 ) and can be classified into three types. The type I Herring body contains an accumulation of neurosecretory granules. These Herring bodies are very scarce and should not be confused with the numerous, but small, axonal swellings which also contain neurosecretory granules.The type II Herring body is characterized by the presence of a varying number of normal, moderately electron dense and empty vesicles, autophagic vacuoles, multilamellate bodies and occasional mitochondria. These Herring bodies are frequently observed.The type III Herring body is typified by the presence of dense vesicles connected to tubular formations which contain material of variable electron density, of filaments, and of long slender and very numerous mitochondria.The presence of multilamellate bodies and autophagic vacuoles suggests that the type II Herring body is in a degenerating phase. This concept is further substantiated by the similarity between this type of Herring body and transected neurosecretory axons in which degeneration is occurring.A similar comparison suggests that the type III Herring body is undergoing a regenerative process. Our current concept of the structure and function of Herring bodies is revised in the discussion.This work was supported by grants 5 RO1 NB 06641 NEUA and 5 R0107492 NEUA from the National Institutes of Health and the Space Sciences Research Center of the University of Missouri. The technical assistance of Mrs. G. Clark and Mr. R. Faup, and the clerical assistance of Mrs. S. Schmidt are gratefully acknowledged.Fellow of the Conséjo National de Investigaciones Científicas y Tecnicas de la República Argentína.  相似文献   

13.
Extracellular matrix (ECM) molecules extracted from the leech central nervous system (CNS) provide substrates that induce extensive growth of processes of identified leech nerve cells in culture. Two ECM molecules, laminin and tenascin, have been identified. The laminin-like molecule has been purified and shown to be a cross-shaped molecule similar to vertebrate laminin with subunits of 340, 220, 180, and 160 kD. Purified laminin as a substrate induces rapid outgrowth of Retzius (R) and Anterior Pagoda (AP) cells in culture. The tenascin molecule has been partially purified. In electronmicrographs, leech tenascin, like vertebrate tenascin, has six arms of equal size joined in a central globule. Highly enriched fractions of leech tenascin induce rapid and extensive outgrowth of Retzius and AP cells in culture. Substrate molecules not only induce outgrowth of processes but also affect the growth patterns of individual nerve cells. Neurites are straight with few branches in laminin, but curved with profuse branches on tenascin. During regeneration of the CNS in the animal, laminin appears at new sites associated with growth cones. The appearance of laminin correlates with the accumulation of microglial cells. Thus, ECM molecules with growth-promoting activity for leech nerve cells in vitro appear to be involved in inducing regeneration and allowing the neurites to reconnect with former targets.  相似文献   

14.
派罗宁B的一个黄色组分作为孢粉素荧光染料的试验   总被引:2,自引:0,他引:2  
朱澂 《植物学报》1983,1(1):53-54
  相似文献   

15.
Summary In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.  相似文献   

16.
The fates of the proximal and distal segments of transected axons differ. Whereas the proximal segment usually recovers from injury and regenerates, the distal segment degenerates. In the present report we studied the kinetics of the recovery processes of both proximal and distal axonal segment following axotomy and its temporal relations to the alterations in the cytoarchitecture of the injured neuron. The experiments were performed on primary cultured metacerebral neurons (MCn) isolated from Aplysia. We transected axons while monitoring the changes in transmembrane potential and input resistance (Rn) by inserting intracellular microelectrodes into the soma and axon. Correlation between the electrophysiological status of the injured axon and its ultrastructure was provided by rapid fixation of the neuron at selected times postaxotomy. Axotomy leads to membrane depolarization from a mean of ?55.7 S.D. 12.8 mV to ?12.7 S.D. 3.3 mV and decreased Rn from tens of MΩ to 1–3 MΩ. The transected axons remained depolarized for a period of 10–260 s for as long as the axoplasm was in direct contact with the bathing solution. Rapid repolarization and partial recovery of Rn was associated with the formation of a membrane seal over the cut ends by the constriction and subsequent fusion of the axolema. Prior to the formation of a membraneous barrier, electron-dense deposits aggregate at the tip of the cut axon and appear to form an axoplasmic “plug.” Electrophysiological analysis revealed that this “plug” does not provide resistance for current flow and that the axoplasmic resistance is homogenously distributed. The kinetics of injury and recovery processes as well as the ultrastructural changes of the proximal and distal segments are cannot be attributed to differences in the immediated response of the segments to axotomy. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
The limited regenerative capacity of several organs, such as central nervous system(CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.  相似文献   

19.
20.
Labeled proteins transported in rat sciatic nerve axons after application of L -(35S) methionine to motoneuron cell bodies were characterized by SDS-polyacrylamide gel electrophoresis. During nerve regeneration following a crush injury, changes were observed in the composition of the fast-transported proteins. The major change was an increase in relative amount of a 18,000-dalton polypeptide (S2). Less dramatic changes occurred in a 66,000-dalton polypeptide (N) which also increased, and in a 13,000-dalton polypeptide (T) which decreased. The increase in S2 and N was significant by three days after injury and all changes were maximal between 7 and 14 days. A return to normal proportions was reached between 21 and 42 days. It is concluded that axonal injury produces, among its other effects, an alteration in the proportions of proteins transported into the axon. It remains to be determined whether these changes are prerequisites for axonal regeneration, or facilitate regeneration, or are incidental to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号