共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond. 相似文献
2.
Ab initio conformational maps for beta-lactose in both the gas phase and in aqueous solution have been constructed at the HF/6-31G(d,p) level of calculation. The results of the gas-phase ab initio calculations allow us to conclude that a rigid conformational map is able to predict the regions of the minima in the potential energy surface of beta-lactose, in full agreement with those found in the relaxed conformational map. The solvation effects do not give rise to any new local minimum in the potential energy surface of beta-lactose, but just change the relative Boltzmann populations of the conformers found in the gas-phase calculations. The values obtained for heteronuclear spin coupling constant (3J(H,C)), using the seven most stable conformers in solution are in good agreement with the available experimental values. This is a good indication that ab initio rigid conformational maps can be reliably used to sort the most stable conformers of beta-lactose. 相似文献
3.
The rotational energy of deoxyguanosine around the C1–N9 bond is calculated using the Hartree-Fock method with an STO-3G basis set. 相似文献
4.
Ab initio (MP2) and DFT (B3LYP) calculations, using the cc-pVTZ and aug-cc-pVTZ basis sets, have been performed to characterize some
stationary points on the ground state potential energy surface of the title molecules. Several properties as, for instance,
relative energies, the barriers for NO rotation around the NN bond, NBO charges on O and amino N atoms, as well as the dipole
moments, have been calculated and analyzed in the light of the structures found. Both computational levels here employed yield
three minima, in which the C2NNO frame is ‘planar’ or ‘quasi-planar’. Important correlations between NBO charges and geometric parameters, as well as between some structural features
and dipole moments are also discussed. A total of 17 structures have been found for the (C2H5)2N-N=O molecule. Two ranges of values have been obtained for the dipole moment, with the largest values occurring for the structures
in which the nitrogen lone pair is parallel to the NO group π system. For instance, these two ranges are from ~4.1 to 4.5
D, and from ~1.6 to 2.1 D, at the MP2/cc-pVTZ level. These ranges are consistent with a larger and a smaller contribution
of a dipolar resonance structure, respectively. As the method or basis set changes the values of the dipole moments change
by at most ~0.23 D. 相似文献
5.
6.
In recent years, the use of high-level ab initio calculations has allowed for the intrinsic conformational properties of nucleic acid building blocks to be revisited. This has provided new insights into the intrinsic conformational energetics of these compounds and its relationship to nucleic acids structure and dynamics. In this article we review recent developments and present new results. New data include comparison of various levels of theory on conformational properties of nucleic acid building blocks, calculations on the abasic sugar, known to occur in vivo in DNA, on the TA conformation of DNA observed in the complex with the TATA box binding protein, and on inosine. Tests of the Hartree-Fock (HF), second-order M?ller-Plesset (MP2), and Density Functional Theory/Becke3, Lee, Yang and Par (DFT/B3LYP) levels of theory show the overall shape of backbone torsional energy profiles (for gamma, epsilon, and chi) to be similar for the different levels, though some systematic differences are identified between the MP2 and DFT/B3LYP profiles. The east pseudorotation energy barrier in deoxyribonucleosides is also sensitive to the level of theory, with the HF and DFT/B3LYP east barriers being significantly lower (approximately 2.5 kcal/mol) than the MP2 counterpart (approximately 4.0 kcal/mol). Additional calculations at various levels of theory suggest that the east barrier in deoxyribonucleosides is between 3.0 and 4.0 kcal/mol. In the abasic sugar, the west pseudorotation energy barrier is found to be slightly lower than the east barrier and the south pucker is favored more than in standard nucleosides. Results on the TA conformation suggest that, at the nucleoside level, this conformation is significantly destabilized relative to the global energy minimum, or relative to the A- and B-DNA conformations. Deoxyribocytosine would destabilize the TA conformation more than other bases relative to the A-DNA conformation, but not relative to the B-DNA conformation. 相似文献
7.
Yakovenko OY Li YY Oliferenko AA Vashchenko GM Bdzhola VG Jones SJ 《Journal of molecular modeling》2012,18(2):663-673
The YFF1 is a new universal molecular mechanic force field designed for drug discovery purposes. The electrostatic part of
YFF1 has already been parameterized to reproduce ab initio calculated dipole and quadrupole moments. Now we report a parameterization of the van der Waals interactions (vdW) for the
same atom types that were previously defined. The 6–12 Lennard-Jones potential terms were parameterized against homodimerization
energies calculated at the MP2/6-31 G* level of theory. The Boys-Bernardi counterpoise correction was employed to account
for the basis-set superposition error. As a source of structural information we used about 2,400 neutral compounds from the
ZINC2007 database. About 6,600 homodimeric configurations were generated from this dataset. A special “closure” procedure
was designed to accelerate the parameters fitting. As a result, dimerization energies of small organic compounds are reproduced
with an average unsigned error of 1.1 kcal mol-1. Although the primary goal of this work was to parameterize nonbonded interactions, bonded parameters were also derived,
by fitting to PM6 semiempirically optimized geometries of approximately 20,000 compounds. 相似文献
8.
Ab initio modeling of glycosyl torsions and anomeric effects in a model carbohydrate: 2-ethoxy tetrahydropyran 下载免费PDF全文
A range of ab initio calculations were carried out on the axial and equatorial anomers of the model carbohydrate 2-ethoxy tetrahydropyran to evaluate the level of theory required to accurately evaluate the glycosyl dihedral angle and the anomeric ratio. Vacuum CCSD(T)/CBS extrapolations at the global minimum yield DeltaE = E(equatorial) - E(axial) = 1.42 kcal/mol. When corrected for solvent (by the IEFPCM model), zero-point vibrations and entropy, DeltaG(298) = 0.49 kcal/mol, in excellent agreement with the experimental value of 0.47 +/- 0.3 kcal/mol. A new additivity scheme, the layered composite method (LCM), yields DeltaE to within 0.1 kcal/mol of the CCSD(T)/CBS result at a fraction of the computer requirements. Anomeric ratios and one-dimensional torsional surfaces generated by LCM and the even more efficient MP2/cc-pVTZ level of theory are in excellent agreement, indicating that the latter is suitable for force-field parameterization of carbohydrates. Hartree-Fock and density functional theory differ from CCSD(T)/CBS for DeltaE by approximately 1 kcal/mol; they show similar deviations in torsional surfaces evaluated from LCM. A comparison of vacuum and solvent-corrected one- and two-dimensional torsional surfaces indicates the equatorial form of 2-ethoxy tetrahydropyran is more sensitive to solvent than the axial. 相似文献
9.
Ab initio structure prediction and de novo protein design are two problems at the forefront of research in the fields of structural biology and chemistry. The goal of ab initio structure prediction of proteins is to correctly characterize the 3D structure of a protein using only the amino acid sequence as input. De novo protein design involves the production of novel protein sequences that adopt a desired fold. In this work, the results of a double-blind study are presented in which a new ab initio method was successfully used to predict the 3D structure of a protein designed through an experimental approach using binary patterned combinatorial libraries of de novo sequences. The predicted structure, which was produced before the experimental structure was known and without consideration of the design goals, and the final NMR analysis both characterize this protein as a 4-helix bundle. The similarity of these structures is evidenced by both small RMSD values between the coordinates of the two structures and a detailed analysis of the helical packing. 相似文献
10.
Yi‐Chun Chiang Yu‐Ju Lin Jia‐Cherng Horng 《Protein science : a publication of the Protein Society》2009,18(9):1967-1977
There has been growing interest in polyproline type II (PPII) helices since PPII helices have been found in folded and unfolded proteins and involved in a variety of biological activities. Polyproline can also form type I helices (PPI) which are very different from PPII conformation and only exist in certain organic solvents. Recent studies have shown that stereoelectronic effects play a critical role in stabilizing a PPI or PPII helix. Here, we have synthesized a series of host–guest peptides with an electron‐withdrawing substituent at the 4R or 4S position of proline and used a kinetic approach to further explore stereoelectronic effects on the transition barrier of the interconversion between PPI and PPII conformations. Time‐dependent circular dichroism measurements revealed that the rates of PPII → PPI conversion were reduced upon incorporating the hydroxyl‐, fluoro‐, and methoxy‐groups at the 4R position while the rates would be increased if these substituents were at the 4S position. We quantified the changes in transition free energy by comparing their rate constants. (4R,2S)‐4‐Fluoroproline and (4S,2S)‐4‐fluoroproline have the largest effect on the transition energy barrier for PPII → PPI conversion. Our results provide important insights into the role of stereoelectronic effects on the PPII → PPI transition state barrier, which has not been reported in past thermodynamic studies. 相似文献
11.
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community. 相似文献
12.
Model-based, three-dimensional (3D) image reconstruction procedures require a starting model to initiate data analysis. We have designed an ab initio method, which we call the random model (RM) method, that automatically generates models to initiate structural analysis of icosahedral viruses imaged by cryo-electron microscopy. The robustness of the RM procedure was demonstrated on experimental sets of images for five representative viruses. The RM method also provides a straightforward way to generate unbiased starting models to derive independent 3D reconstructions and obtain a more reliable assessment of resolution. The fundamental scheme embodied in the RM method should be relatively easy to integrate into other icosahedral software packages. 相似文献
13.
M Aida K Negishi H Hayatsu M Maeda 《Biochemical and biophysical research communications》1988,153(2):552-557
The intrinsic properties of N4-aminocytosine, a base analogue of cytosine, are analyzed by an ab initio molecular orbital method. Relative stabilities of four possible isomeric structures of N4-aminocytosine are shown. The more stable isomer has the smaller dipole moment, so the relative stabilities of the isomers in solutions are subject to solvent polarity. The mutagenicity of this base analogue must arise because it can behave like either cytosine or thymine. It can form a guanine-cytosine-like base pair more easily than cytosine, and an adenine-thymine-like base pair less easily than thymine. 相似文献
14.
We propose a new formulation for the problem of ab initio metabolic pathway reconstruction. Given a set of biochemical reactions together with their substrates and products, we consider the reactions as transfers of atoms between the chemical compounds and we look for successions of reactions transferring a maximal (or preset) number of atoms between a given source and sink compound. We state this problem as the one of finding a composition of partial injections that maximizes the image size. First, we study the theoretical complexity of this problem, state some related problems and then give a practical algorithm to solve them. Finally, we present two applications of this approach to the reconstruction of the tryptophan biosynthesis pathway and to the glycolysis. 相似文献
15.
Based on the time-dependent density functional response theory, an approach for the prediction of optical rotations of enantiomers of conformationally flexible molecules was developed. The method was applied successfully for the determination of the absolute configuration of trans-2-fluorocycloalkanol acetates with different ring sizes. The largest deviations between experimental and theoretical [alpha](D) values are 10 deg x [dm x (g/cc)](-1) (about 20% error). These theoretical results suggest that the optical rotation in these molecules is dominated by the local (1R;2R) configuration of the two substituents and that different ring and even axial/equatorial orientations play a less important role. 相似文献
16.
Ab initio/DFT analysis of the conformational properties of free Ac-Ala-NMe(2) (N-acetyl-L-alanine-N',N'-dimethylamide) in terms of the N-H.O, N-H.N, C-H.O hydrogen bonds and C(delta+) = O(delta-) dipole attractions was performed. The Ala residue combined with the C-terminal tertiary amide prefers an extended conformation and that characteristic of the (i + 1)th position of the betaVIb turn. These can be easily remodelled into a structure compatible with the (i + 1)th position of the betaII/betaVIa turn. The residue has also the potential to adopt the conformation accommodated at both central positions of the betaIII/betaIII' turn or the (i + 1)th position of the betaI/beta'I turn. 相似文献
17.
Leung K 《Biophysical chemistry》2006,124(3):222-228
We apply ab initio molecular dynamics (AIMD) to study the hydration structures and electronic properties of the formohydroxamate anion in liquid water. We consider the cis- nitrogen-deprotonated, cis- oxygen-deprotonated, and trans- oxygen-deprotonated formohydroxamate tautomers. They form an average of 6.3, 6.9, and 6.0 hydrogen bonds with water molecules, respectively. The predicted pair correlation functions and time dependence of the hydration numbers suggest that water is highly structured around the nominally negatively charged oxime oxygen in O-deprotonated tautomers but significantly less so around the nitrogen atom in the N-deprotonated species. Wannier function analysis suggests that, in the O-deprotonated anions, the negative charge is concentrated on the oxime oxygen, while in the N-deprotonated case, it is partially delocalized between the nitrogen and the adjoining oxime oxygen atom. 相似文献
18.
19.
In this study, a new ab initio method named CLOOP has been developed to build all-atom loop conformations. In this method, a loop main-chain conformation is generated by sampling main-chain dihedral angles from a restrained varphi/psi set, and the side-chain conformations are built randomly. The CHARMM all-atom force field was used to evaluate the loop conformations. Soft core potentials were used to treat the non-bond interactions, and a designed energy-minimization technique was used to close and optimize the loop conformations. It is shown that the two strategies improve the computational efficiency and the loop-closure rate substantially compared to normal minimization methods. CLOOP was used to construct the conformations of 4-, 8-, and 12-residue loops in Fiser's test set. The average main-chain root-mean-square deviations obtained in 1,000 trials for the 10 different loops of each size are 0.33, 1.27, and 2.77 A, respectively. CLOOP can build all-atom loop conformations with a sampling accuracy comparable with previous loop main-chain construction algorithms. [Figure: see text]. 相似文献
20.
Ab initio minimal and split-valence basis set calculations have been performed on compounds that are involved in retro–inverso modifications, i.e., gem-diaminoalkyl and malonyl structures. These calculations are compared with empirical force field calculations and the minor differences discussed. All calculations agree that the preferred helical conformation of the isolated gem-diaminoalkyl and malonyl derivatives of residues found in the retro-inverso modified peptides is 5–8 kcal/mol lower than the C conformation preferred by the isolated peptide residues. Population analysis and contour plots of the charge distribution are used to help explain the differences between the model compounds. 相似文献