首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous retroviruses provide molecular fossils for studying the ancient evolutionary history of retroviruses. Here, we report our independent discovery and analysis of endogenous lentiviral insertions (Mustelidae endogenous lentivirus [MELV]) within the genomes of weasel family (Mustelidae). Genome-scale screening identified MELV elements in the domestic ferret (Mustela putorius furo) genome (MELVmpf). MELVmpf exhibits a typical lentiviral genomic organization. Phylogenetic analyses position MELVmpf basal to either primate lentiviruses or feline immunodeficiency virus. Moreover, we verified the presence of MELV insertions in the genomes of several species of the Lutrinae and Mustelinae subfamilies but not the Martinae subfamily, suggesting that the invasion of MELV into the Mustelidae genomes likely took place between 8.8 and 11.8 Ma. The discovery of MELV in weasel genomes extends the host range of lentiviruses to the Caniformia (order Carnivora) and provides important insights into the prehistoric diversity of lentiviruses.  相似文献   

2.
Genome and proteome analysis of Chlamydia   总被引:2,自引:0,他引:2  
  相似文献   

3.
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.  相似文献   

4.
Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H.?defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ~55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).  相似文献   

5.
Endogenous retrovirus (ERV) genomes integrated into the chromosomal DNA of the host were first detected in chickens and mice as Mendelian determinants of Gag and Env proteins and of the release of infectious virus particles. The presence of ERV was confirmed by DNA hybridization. With complete host genomes available for analysis, we can now see the great extent of viral invasion into the genomes of numerous vertebrate species, including humans. ERVs are found at many loci in host DNA and also in the genomes of large DNA viruses, such as herpesviruses and poxviruses. The evolution of xenotropism and cross-species infection is discussed in the light of the dynamic relationship between exogenous and endogenous retroviruses.  相似文献   

6.
Endogenous viral elements in animal genomes   总被引:2,自引:0,他引:2  
Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.  相似文献   

7.
Horie M  Tomonaga K 《Uirusu》2010,60(2):143-153
Approximately 8% of our genome is made up of endogenous retroviral elements. Endogenous retrovirus is a fossil record of ancient retrovirus infection and, therefore, gives important insights into the evolutional relationship between retroviruses and their hosts. On the other hand, until recently, it has been believed that no endogenous non-retroviral viruses exist in animal genomes. We lately discovered endogenous elements homologous to the nucleoprotein of bornaviruses, a negative-strand RNA virus, in the genomes of many mammalian species, including humans. We also demonstrated that mRNA of extant mammalian bornavirus, Borna disease virus, is reverse-transcribed and integrated into the host genome DNA. These findings provided novel insights not only into the interaction between RNA viruses and their hosts, but also into the mechanism underlying the gain of novelty in mammalian genomes. In this review, we will briefly summarize our recent knowledge about endogenous bornavirus elements and also introduce some recent discoveries regarding endogenous elements of non-retroviral viruses in vertebrate genomes.  相似文献   

8.
9.
Thanks to the exponentially increasing number of publicly available bacterial genome sequences, one can now estimate the important contribution of integrated viral sequences to the diversity of bacterial genomes. Indeed, temperate bacteriophages are able to stably integrate the genome of their host through site‐specific recombination and transmit vertically to the host siblings. Lysogenic conversion has been long acknowledged to provide additional functions to the host, and particularly to bacterial pathogen genomes where prophages contribute important virulence factors. This review aims particularly at highlighting the current knowledge and questions about lysogeny in Salmonella genomes where functional prophages are abundant, and where genetic interactions between host and prophages are of particular importance for human health considerations.  相似文献   

10.
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art ‘HPV integrated site capture’ (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a ‘looping’ mechanism by which flanking host regions become amplified. Furthermore, using our ‘HPV16-specific Region Capture Hi-C’ technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a ‘cancer-causing gene’ is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.  相似文献   

11.
Two similar, large double-stranded DNA viruses, Feldmannia species virus 158 (FsV-158) and FsV-178, replicate only in the unilocular reproductive cells (sporangia) of a brown filamentous alga in the genus Feldmannia. Virus particles are not present in vegetative cells but they are produced in the sporangia formed on vegetative filaments that have been transferred newly into culture. Thus, we proposed that these viruses exist in the vegetative cells in a latent form (R. G. Ivey, E. C. Henry, A. M. Lee, L. Klepper, S. K. Krueger, and R. H. Meints, Virology 220:267-273, 1996). In this article we present evidence that the two FsV genomes are integrated into the host genome during vegetative growth. The FsV genome integration sites were identified by cloning the regions where the FsV genome is linked to the host DNA. FsV-158 and FsV-178 are integrated into two distinct locations in the algal genome. In contrast, the integration sites in the two viral genomes are identical. Notably, the integration sites in the host and viruses contain GC and CG dinucleotide sequences, respectively, from which the GC sequences are recovered at both host-virus junctions. The splice sites in the two FsV genomes are predicted to form a stem-loop structure with the CG dinucleotide in the loop portion.  相似文献   

12.
13.
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.  相似文献   

14.
15.
16.
The poxviruses (Poxviridae) are a family of viruses with double-stranded DNA genomes and substantial numbers (often >200) of genes per genome. We studied the patterns of gene gain and loss over the evolutionary history of 17 poxvirus complete genomes. A phylogeny based on gene family presence/absence showed good agreement with families based on concatenated amino acid sequences of conserved single-copy genes. Gene duplications in poxviruses were often lineage specific, and the most extensively duplicated viral gene families were found in only a few of the genomes analyzed. A total of 34 gene families were found to include a member in at least one of the poxvirus genomes analyzed and at least one animal genome; in 16 (47%) of these families, there was evidence of recent horizontal gene transfer (HGT) from host to virus. Gene families with evidence of HGT included several involved in host immune defense mechanisms (the MHC class I, interleukin-10, interleukin-24, interleukin-18, the interferon gamma receptor, and tumor necrosis factor receptor II) and others (glutaredoxin and glutathione peroxidase) involved in resistance of cells to oxidative stress. Thus "capture" of host genes by HGT has been a recurrent feature of poxvirus evolution and has played an important role in adapting the virus to survive host antiviral defense mechanisms.  相似文献   

17.
Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution.  相似文献   

18.
Extrachromosomal element pSOG3 (52,162 nucleotides) in the genome of Sodalis glossinidius contains redundant phage-related gene pairs, indicating that it may have been formed by the fusion of two ancestral phage genomes followed by gene degradation. We suggest that pSOG3 is a prophage that has undergone genome degeneration accompanying host adaptation to symbiosis.  相似文献   

19.
Mononucleotide repeats (MNRs) have been systematically investigated in the genomes of eukaryotic and prokaryotic organisms. However, detailed information on the distribution of MNRs in viral genomes is limited. In this study, we examined the distributions of MNRs in 256 fully sequenced virus genomes which showed extensive variations across viral genomes, and is significantly influenced by both genome size and CG content. Furthermore, the ratio of the observed to the expected number of MNRs (O/E ratio) appears to be influenced by both the host range and genome type of a particular virus. Additionally, the densities and frequencies of MNRs in genic regions are lower than in non-coding regions, suggesting that selective pressure acts on viral genomes. We also discuss the potential functional roles that these MNR loci could play in virus genomes. To our knowledge, this is the first analysis focusing on MNRs in viruses, and our study could have potential implications for a deeper understanding of virus genome stability and the co-evolution that occurs between a virus and its host.  相似文献   

20.
A Rynditch  F Kadi  J Geryk  S Zoubak  J Svoboda  G Bernardi 《Gene》1991,106(2):165-172
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号