首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronic acid binding protein (HBP) was purified homogeneously from normal adult rat liver by hyaluronate-sepharose affinity chromatography. The molecular weight of this protein as determined by gel filtration was found to be 64,000 daltons. This protein HBP appeared as a single band in non-dissociating gel electrophoresis and has a subunit of molecular weight approximately 12,000 as determined by SDS-gel electrophoresis.  相似文献   

2.
Cellular retinoic acid-binding protein has been purified to homogeneity from rat testes. The procedures utilized in the purification included acid precipitation, gel filtration, and chromatography on DEAE-cellulose. The binding protein was purified approximately 12,000-fold, based on total soluble testicular protein. The protein is a single polypeptide chain with a molecular weight of 14,600, determined by information from gel filtration and sodium dodecyl sulfate-polyacrylamide electrophoresis. The protein binds retinoic acid with high affinity; the apparent dissociation constant was determined by fluorometric titration to be 4.2 X 10(-9) M.  相似文献   

3.
A low molecular weight, native zinc binding, cytosolic protein (LMZP) has been isolated, purified and characterized from human normal term placenta. Gel filtration of heat treated placental cytosol after sequential acetone precipitation (80% ppt) revealed a major zinc binding protein in the range of low molecular weight. This partially purified zinc binding fraction was further fractionated on DEAE-Sephadex A-25. The zinc was eluted in one of the three peak fractions. Further, the purity of zinc binding protein was confirmed on fast protein liquid chromatography (FPLC). The purified placental LMZP was homogenous on SDS-polyacrylamide gel electrophoresis with a single band. Ultraviolet (UV) spectrum of LMZP showed an absorption maximum at 257 nm which disappeared at pH 2. Molecular weight of LMZP as determined by gel chromatography, SDS-polyacrylamide gel electrophoresis and amino acid analysis was 6 kDa. It was calculated that 1 g atom of zinc was bound to 1 mole of the LMZP. Unlike in classical metallothionein, the amino acid composition of placental LMZP revealed the presence of aromatic amino acids, lower content of cysteine and higher content of histidine, glutamic acid and aspartic acid (10, 9 and 5 residues/mole, respectively).  相似文献   

4.
A new matrix for affinity chromatography using pteroylglutamic acid coupled to an epoxy-activated matrix via hexanediamine resulted in negligible ligand leakage and permitted the purification of soluble and membrane-associated folate-binding proteins from human leukemia cells contained in a human spleen. Two species of membrane-associated folate-binding proteins were purified from the solubilized membrane fraction of the tissue using 2 M guanidine-HCl to elute the proteins from the affinity matrix. The higher molecular weight binding protein had an Mr of approximately 310,000 and the smaller species had an Mr of approximately 28,000 by gel filtration. By SDS-polyacrylamide gel electrophoresis the smaller species of membrane-associated protein had a molecular weight of 35,500, but the molecular weight of the larger membrane-associated species could not be determined by this method because of the high concentration of residual Triton X-100 in the sample which interfered with the silver staining of the gel. Two folate-binding proteins, which by SDS-polyacrylamide gel electrophoresis had molecular weights of 34,500 and 32,000, were purified from the 44,000 X g supernatant fraction of the tissue homogenate by acid elution from the affinity matrix. Despite the different cell components from which the soluble and membrane-associated folate-binding proteins were purified, the amino acid compositions were similar, especially with respect to the apolar amino acids. All these forms of folate-binding proteins had higher affinity for oxidized than for reduced folates, and very low affinity for 5-formyltetrahydrofolate and methotrexate. Although these proteins cross-react with one antiserum raised previously to a folate-binding protein from other human leukemia cells, they do not cross-react with the folate-binding proteins purified from two other sources of human leukemia cells, from human placenta, or from the human KB cell line.  相似文献   

5.
Molecular structure of the beta-adrenergic receptor   总被引:1,自引:0,他引:1  
The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured beta 1- and beta 2-adrenergic receptor proteins, as solubilized with the detergent digitonin. Model systems used were frog and turkey red blood cell as well as rat, rabbit, and bovine lung plasma membrane preparations. To correct for the effects of detergent binding, sedimentation equilibrium analysis in various solvents, as adapted for the air-driven ultracentrifuge, was used. With this approach an estimate of 6 g of digitonin/g of protein binding was determined, corresponding to a ratio of 180 mol of digitonin/mol of protein. Protein molecular weights estimated by this method were 43 500 for the turkey red blood cell beta 1 receptor and 54 000 for the frog red blood cell beta 2 receptor. Molecular weights of 60 000-65 000 were estimated for beta 1 and beta 2 receptors present in mammalian lungs. These values agree with estimates of subunit molecular weight obtained by SDS gel electrophoresis of purified or photoradiolabeled preparations and suggest beta-adrenergic receptors to be digitonin solubilized from the membrane as single polypeptide chains.  相似文献   

6.
Brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) binds selectively to the outer membrane of rat liver mitochondria but not to inner mitochondrial or microsomal membranes nor to the plasma membrane of human erythrocytes. A protein having subunit molecular weight of 31,000, determined by sodium dodecyl sulfate-gel electrophoresis, has been highly purified from the outer mitochondrial membrane by repetitive solubilization with octyl-beta-D-glucopyranoside followed by reconstitution into membranous vesicles when the detergent is removed by dialysis. When incorporated into lipid vesicles, the protein confers the ability to bind brain hexokinase in a Glc-6-P-sensitive manner as is seen with the intact outer mitochondrial membrane. Hexokinase binding ability and the 31,000 subunit molecular weight protein co-sediment during sucrose density gradient centrifugation. Both hexokinase binding ability and the 31,000 subunit molecular weight protein are resistant to protease treatment of the intact outer mitochondrial membrane while other membrane proteins are extensively degraded. It is concluded that this protein, designated the hexokinase-binding protein (HBP), is an integral membrane protein responsible for the selective binding of hexokinase by the outer mitochondrial membrane.  相似文献   

7.
Cytokinin binding protein from tobacco leaves was isolated and purified to a single protein by means of affinity chromatography on benzyladenine-linked Sepharose column combined with polyacrylamide gel electrophoresis. In vitro binding of this protein to [14C] benzyladenine was inhibited remarkably by cold benzyladenine and kinetin and slightly by adenine, but not adenosine. The molecular weight of the protein was determined to be about 4,000 daltons by gel filtration and SDS polyacrylamide gel electrophoresis.  相似文献   

8.
Cytochrome c1 of photosynthetic bacterium R. sphaeroides R-26 has been purified from isolated cytochrome b-c1 complex to a single polypeptide, using a procedure involving Triton X-100 and urea solubilization, calcium phosphate column chromatography and ammonium sulfate fractionation. The purified protein contains 30 nmoles heme per mg protein and has an apparent molecular weight of 30,000, as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis. Bacterial cytochrome c1 is soluble in aqueous solution in the absence of detergent and has spectral characteristics similar to mammalian cytochrome c1. The amino acid compositions of these two proteins, however, are not comparable.  相似文献   

9.
Cellular retinol-binding protein has been purified to homogeneity from rat liver. The procedures utilized in the purification included acid precipitation, gel filtration on Sephadex G-75 and G-50, and chromatography on DEAE-cellulose. The binding protein was purified approximately 3,500-fold, based on total soluble liver protein. The protein is a single polypeptide chain with a molecular weight of 14,600 based on information obtained by the techniques of sedimentation equilibrium analysis, gel filtration, and sodium dodecyl sulfate-polyacrylamide electrophoresis. The protein binds retinol with high affinity; the appparent dissociation constant was determined by fluorometric titration to be 1.6 X 10(-8) M. Retinol bound to the protein has an absorption spectrum (lambdamax, 350 nm) considerably altered from the spectrum of retinol in ethanol (lambdamax, 325 nm).  相似文献   

10.
A protein which preferentially binds Z-form duplex DNA has been purified from the cells of Deinococcus radiodurans. The molecular weight of the protein was estimated to be approximately 68,000 by gel filtration and SDS-polyacrylamide gel electrophoresis. Amino acid analysis of the protein indicates that it is not so basic since it contains a lower mole percent of lysine and higher mole percent of aspartic acid than those in histone-like DNA binding protein II (HU) of Escherichia coli. The first fifteen amino acid residues from the N-terminus have been also determined.  相似文献   

11.
D Noel  K Nikaido  G F Ames 《Biochemistry》1979,18(19):4159-4165
Mutation hisJ5625 has altered the histidine-binding protein J of Salmonella typhimurium such that histidine transport is impaired, even though binding of histidine by the J protein is unimpaired [Kustu, S.G., & Ames, G.F. (1974) J. Biol. Chem. 249, 6976--6983]. We have determined by protein analytical methods that the only effect of this mutation has been the substitution of a cysteine residue for an arginine at a site in the interior of the polypeptide chain. This arginine residue is therefore potentially essential for the transport function of the protein. The mutant protein migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis more slowly than the wild type protein, as if its molecular weight were greater by as much as 2000. Since this behavior is apparently due to a single amino acid replacement, a molecular weight difference even between two closely related proteins should not be inferred solely on the basis of sodium dodecyl sulfate gel electrophoresis.  相似文献   

12.
An adipose-specific protein has been purified from murine 3T3-L1 adipocytes to greater than 98% homogeneity. A purification procedure was developed utilizing a combination of gel filtration, cation exchange chromatography, and covalent chromatography on activated-thiol Sepharose 4B. The protein exists as a single polypeptide with a molecular weight of about 15,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein contains 2 mol of reduced sulfhydryl groups per mol of protein and an amino terminus blocked to sequencing. Automated Edman degradation of trypsin and CNBr-derived peptides has verified that the purified protein is that predicted by the mRNA (Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A., and Kelly, T. J. Jr. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5468-5472). Based on sequence analysis, the 15-kDa adipocyte protein is considered to be a member of a family of tissue-specific, cytosolic lipid-binding proteins. Utilizing a liposome assay, the purified protein binds both oleic acid and retinoic acid saturably with approximately 1 mol of ligand bound per mol of protein. Dissociation constants determined from Scatchard analysis were 3 and 50 microM, respectively. This report represents the first demonstration of a member of this family of structurally related proteins that is capable of binding both fatty acid and retinoic acid. Hence, we propose the name adipocyte lipid-binding protein, or ALBP.  相似文献   

13.
Carrier-free 203Pb has been used to label high affinity lead-binding proteins in rat brain cytosol to allow their initial characterization. The low molecular weight 203Pb-protein complex collected from a Sephadex G-75 column eluate has been further purified by Sephadex DEAE chromatography and then partially characterized. The protein has a molecular weight of 23,000 daltons as determined by SDS polyacrylamide gel electrophoresis and significant levels of glutamic acid (9.3%), aspartic acid (10.8%) and cysteine (9.4%). Western blot studies conducted using the polyclonal antibody to the renal lead-binding proteins showed a lack of reactivity, indicating that the brain protein is immunologically distinct from that found in the kidney.  相似文献   

14.
Structural Proteins of Simian Virus 40   总被引:17,自引:15,他引:2       下载免费PDF全文
Sodium dodecyl sulfate acrylamide gel electrophoresis of the solubilized proteins from purified simian virus 40 (SV40) virions revealed two major and two minor structural polypeptide components. The major components which comprise over 75% of the total virion were shown to be the capsid proteins by immunological and isoelectric focusing fractionation analysis. These two polypeptides have estimated molecular weights of 45,000 daltons as determined by gel electrophoresis. One of the two minor components was identified as the nucleocapsid protein and has an approximate molecular weight of 16,000. The other unidentified minor component has an average molecular weight of 29,000.  相似文献   

15.
The membrane-bound enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase has been purified from acetone powders of bovine white matter and spinal cord. Affinity chromatography on AMP-Sepharose has been used as the final step in the chromatographic purifications. The yield was about 3 mg of purified enzyme per 100 g of tissue in each instance. The enzymes from the two sources were indistinguishable by chromatography, gel electrophoresis, and amino acid analysis; the enzyme from spinal cord, however, has shown a specific activity of 225 units/mg compared to 342 units/mg for the enzyme from white matter. Both proteins had a molecular weight of 100,000 by gel filtration and 50,000 by sodium dodecyl sulfate-gel electrophoresis under reducing conditions. The properties of the enzyme, including amino acid composition determined on the purified soluble protein and on the protein purified by sodium dodecyl sulfate-gel electrophoresis, were those of a basic hydrophobic protein.  相似文献   

16.
An unspecific carboxylesterase was purified 180-fold from acid-precipitated human liver microsomes. The final preparation was homogeneous on disc electrophoresis and polyacrylamide gel electrophoresis in the presence of 6.25 M urea at pH 3.2. A single symmetrical peak was also found on gel filtration and on velocity sedimentation in the analytical ultracentrifuge, whereas slight heterogeneity was observed on isoelectric focusing.The amino acid composition of the purified enzyme is presented. From the results the partial specific volume (0.745 ml × g?1) and the minimal molecular weight (60,000) could be calculated. Fingerprint maps of tryptic peptides from the carboxymethylated enzyme are shown.The molecular weight as determined by gel filtration, disc electrophoresis, and analytical ultracentrifugation is in the range of 181,000–186,000. For the molecular weight of the subunits a value of 61,500 has been obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The equivalent weight of the enzyme has been estimated to be 62,500 from stoichiometry of its reaction with diethyl-p-nitrophenyl-phosphate. Partial cross-linking of the subunits with dimethyl suberimidate and subsequent sodium dodecylsulfate polyacrylamide gel electrophoresis yielded three bands with molecular weights of 60,000, 120,000, and 180,000.From these results it is concluded that human liver esterase is a trimeric protein. It is composed of three subunits of equal size, and there is one active site per subunit.  相似文献   

17.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

18.
A glycolipid-specific lipid transfer protein has been purified to apparent homogeneity from pig brain post-mitochondrial supernatant. The purified protein was obtained after about 6,000-fold purification at a yield of 19%. Evidence for the homogeneity of the purified protein includes the following: (i) a single band in acidic gel electrophoresis, in sodium dodecyl sulfate-gel electrophoresis, (ii) a single band in analytical gel isoelectric focusing, (iii) exact correspondence between the glycolipid transfer activity and stained protein absorbance in the acidic gel electrophoresis, and (iv) coincidence between the transfer activity and protein absorption at 280 nm in gel filtration through Ultrogel AcA 54. The protein has an isoelectric point of about 8.3 and a molecular weight of 22,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecular weight of 15,000 was calculated from AcA 54 gel filtration. The amino acid composition has been determined. The protein binds [3H]galactosylceramide but not [3H]phosphatidylcholine. Under the conditions used, 1 mol of the transfer protein bound about 0.13 mol of [3H]galactosylceramide. The glycolipid transfer protein-[3H]galactosylceramide complex was isolated by a Sephadex G-75 chromatography. An incubation of the complex with liposomes resulted in the transfer of [3H]galactosylceramide from the complex to the acceptor liposomes. The result indicates that the complex functions as an intermediate in the glycolipid transfer reaction. The protein facilitates the transfer of [3H]galactosylceramide from donor liposomes to acceptor liposomes lacking in glycolipid as well as to acceptor liposomes containing galactosylceramide.  相似文献   

19.
The sex steroid binding protein (SBP) of human pregnancy serum was purified to homogeneity by the sequential use of ammonium sulfate precipitation, affinity chromatography on 5alpha-dihydrotestosterone-17beta-succinyldiaminoethyl-(1,4-butanediol diglycidyl ether)-agarose, and preparative polyacrylamide gel electrophoresis. The yield of pure SBP was improved from 5% as originally reported [Mickelson, K. E., and Petra, P. H. (1975), Biochemistry 14, 957] to 34%. Homogeneity of SBP was shown by equilibrium sedimentation ultracentrifugation in 6 M guanidine hydrochloride containing 0.1 M mercaptoethanol which yields a minimum molecular weight of 36 335 +/- 525. The protein is also homogeneous when examined by gel electrophoresis in the presence of sodium dodecyl sulfate. A value of 52 000 for the molecular weight is obtained by this method. SBP partially purified from Cohn fraction IV has also a molecular weight of 52 000 by gel electrophoresis in the presence of sodium dodecyl sulfate; that fraction is contaminated with another protein of molecular weight 90 000 which must be removed to obtain homogeneous SBP. The amino acid composition of SBP isolated from pregnancy serum is presented.  相似文献   

20.
J K Vishwanatha  Z Wei 《Biochemistry》1992,31(6):1631-1635
The ubiquitous dinucleotide P1,P4-di(adenosine-5') tetraphosphate (Ap4A) has been proposed to be involved in DNA replication and cell proliferation, DNA repair, platelet aggregation, and vascular tonus. A protein binding specifically to Ap4A is associated with a multiprotein form of DNA polymerase alpha (pol alpha 2) in HeLa cells. The Ap4A binding protein from HeLa cells has been purified to homogeneity starting from pol alpha 2 complex. The Ap4A binding protein is hydrophobic and is resolved from the pol alpha 2 complex by hydrophobic interaction chromatography on butyl-Sepharose and subsequently purified to homogeneity by chromatography on Mono-Q and Superose-12 FPLC columns. The Ap4A binding activity elutes as a single symmetrical peak upon gel filtration with a molecular mass of 200 kDa. Upon polyacrylamide gel electrophoresis under nondenaturing conditions, the purified protein migrates as a single protein of 200 kDa. Upon electrophoresis under denaturing conditions, the binding activity is resolved into two polypeptides of 45 and 22 kDa, designated as A1 and A2, respectively. A1 and A2 can be cross-linked using the homobifunctional cross-linking agent disuccinimidyl suberate. The cross-linked protein migrates as a single protein of 210 kDa on polyacrylamide gels under denaturing conditions, suggesting that these two polypeptides are subunits of a single protein. The purified protein binds Ap4A efficiently, and by Scatchard analysis, we have determined a dissociation constant of 0.25 microM, indicating high affinity of Ap4A binding protein to its ligand. ATP is not required for the binding activity. The nonionic detergent Triton X-100 is necessary for stabilizing the purified protein. Amino acid composition analysis indicates that A1 and A2 are distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号