首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgtC is important for the survival of several bacterial pathogens in macrophages and for growth under magnesium limitation. Among eukaryotes, a gene homologous to mgtC was found only in the pathogenic fungus Aspergillus fumigatus. Our data show that the A. fumigatus MgtC (AfuMgtC) protein does not have the same function as the bacterial MgtC proteins.  相似文献   

2.
Pathogenic bacteria have developed strategies to adapt to host environment and resist host immune response. Several intracellular bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis, share the horizontally-acquired MgtC virulence factor that is important for multiplication inside macrophages. MgtC is also found in pathogenic Pseudomonas species. Here we investigate for the first time the role of MgtC in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in the systemic infection model of zebrafish embryos, and strikingly, the attenuated phenotype is dependent on the presence of macrophages. In ex vivo experiments, the P. aeruginosa mgtC mutant is more sensitive to macrophage killing than the wild-type strain. However, wild-type and mutant strains behave similarly toward macrophage killing when macrophages are treated with an inhibitor of the vacuolar proton ATPase. Importantly, P. aeruginosa mgtC gene expression is strongly induced within macrophages and phagosome acidification contributes to an optimal expression of the gene. Thus, our results support the implication of a macrophage intracellular stage during P. aeruginosa acute infection and suggest that Pseudomonas MgtC requires phagosome acidification to play its intracellular role. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC shares a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to host immune response in relation to the different bacterial lifestyles. In addition, the phenotypes observed with the mgtC mutant in infection models can be mimicked in wild-type P. aeruginosa strain by producing a MgtC antagonistic peptide, thus highlighting MgtC as a promising new target for anti-virulence strategies.  相似文献   

3.
4.
MgtC is required for intramacrophage replication of intracellular pathogens and growth in low Mg(2+) medium. A link between these two phenotypes has been proposed due to putative Mg(2+) deprivation inside phagosome. MgtC is part of a family of proteins that share a conserved N-terminal transmembrane domain and a variable C-terminal domain. A combination of predictive and experimental approaches indicates that the Salmonella MgtC C-terminal domain is cytoplasmic, adopts a fold also found in metal transporters and RNA interacting domain, and does not bind Mg(2+). MgtC homologues from diverse gamma-proteobacteria, including the extracellular pathogens Yersinia pestis, Photorhabdus luminescens and Pseudomonas aeruginosa, have been expressed in a SalmonellaDeltamgtC strain. The Y. pestis MgtC fully replaced the Salmonella MgtC whereas P. luminescens or P. aeruginosa MgtC complemented only in low Mg(2+) medium, thus dissociating for the first time the two MgtC-related phenotypes. In addition, we identified single amino acids changes that prevent or promote MgtC role in macrophages without affecting MgtC role in low Mg(2+) culture. A SalmonellaDeltamgtC strain showed elongated and autoaggregated bacteria in low Mg(2+) medium but not in macrophages. Taken together our results suggest that MgtC has a dual role when bacteria localize in macrophages or low Mg(2+) environment.  相似文献   

5.
MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg2+ deprivation, but previous work suggested that MgtC is not a Mg2+ transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg2+ deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg2+ concentration, indicating that it does not bind Mg2+. The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg2+ uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain.  相似文献   

6.
MgtC is a virulence factor involved in intramacrophage growth that has been reported in several intracellular pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium. MgtC participates also in adaptation to Mg2+ deprivation. Herein, we have constructed a mgtC mutant in Mycobacterium marinum to further investigate the role of MgtC in mycobacteria. We show that the M. marinum mgtC gene (Mma mgtC) is strongly induced upon Mg2+ deprivation and is required for optimal growth in Mg2+-deprived medium. The behaviour of the Mma mgtC mutant has been investigated in the Danio rerio infection model using a transgenic reporter zebrafish line that specifically labels neutrophils. Although the mgtC mutant is not attenuated in the zebrafish embryo model based on survival curves, our results indicate that phagocytosis by neutrophils is enhanced with the mgtC mutant compared to the wild-type strain following subcutaneous injection. Increased phagocytosis of the mutant strain is also observed ex vivo with the murine J774 macrophage cell line. On the other hand, no difference was found between the mgtC mutant and the wild-type strain in bacterial adhesion to macrophages and in the internalization into epithelial cells. Unlike the role reported for MgtC in other intracellular pathogens, Mma MgtC does not contribute significantly to intramacrophage replication. Taken together, these results indicate an unanticipated function of Mma MgtC at early step of infection within phagocytic cells. Hence, our results indicate that although the MgtC function is conserved among pathogens regarding adaptation to Mg2+ deprivation, its role towards phagocytic cells can differ, possibly in relation with the specific pathogen''s lifestyles.  相似文献   

7.
MgtC is a virulence factor required for intramacrophage survival and growth in low Mg2+ medium in two pathogens that are not phylogenetically related, Salmonella typhimurium and Mycobacterium tuberculosis. In S. typhimurium, mgtC is carried by the SPI-3 pathogenicity island and hybridization studies have suggested that the distribution of mgtC among enterobacteria is limited. In the present study, we searched for the presence of mgtC-like sequences in eubacterial genomes. Analyses of MgtC-like proteins phylogeny and mgtC-like chromosomal context support the hypothesis that mgtC has been acquired by horizontal gene transfer repeatedly throughout bacterial evolution. In addition, the phylogenetic analysis revealed the existence of a subgroup of proteins, that includes the S. typhimurium and M. tuberculosis MgtC proteins, as well as MgtC-related proteins from other pathogens that are able to survive in macrophages, B. melitensis and Y. pestis. We propose that MgtC has a similar function in all these distantly related pathogens, most likely providing the ability to grow in a low Mg2+ environment. Present address: (Anne-Béatrice Blanc-Potard) Inserm U431, Faculté de Médecine, 30900 Nîmes, France  相似文献   

8.
MgtR, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth in macrophages through binding to the membrane protein MgtC that has been identified as essential for replication in macrophages. While the Mycobacterium tuberculosis MgtC is highly homologous to its S. Typhi analogue, there does not appear to be an Mtb homologue for MgtR, raising significant pharmacological interest in this system. Here, solid-state NMR and EPR spectroscopy in lipid bilayer preparations were used to demonstrate the formation of a heterodimer between S. Typhi MgtR and the transmembrane helix 4 of Mtb MgtC. Based on the experimental restraints, a structural model of this heterodimer was developed using computational techniques. The result is that MgtR appears to be ideally situated in the membrane to influence the functionality of MgtC.  相似文献   

9.
A tightly controlled turnover of membrane proteins is required for lipid bilayer stability, cell metabolism, and cell viability. Among the energy-dependent AAA+ proteases in Salmonella, FtsH is the only membrane-bound protease that contributes to the quality control of membrane proteins. FtsH preferentially degrades the C-terminus or N-terminus of misfolded, misassembled, or damaged proteins to maintain physiological functions. We found that FtsH hydrolyzes the Salmonella MgtC virulence protein when we substitute the MgtC 226th Trp, which is well conserved in other intracellular pathogens and normally protects MgtC from the FtsH-mediated proteolysis. Here we investigate a rule determining the FtsH-mediated proteolysis of the MgtC protein at Trp226 residue. Substitution of MgtC tryptophan 226th residue to alanine, glycine, or tyrosine leads to MgtC proteolysis in a manner dependent on the FtsH protease whereas substitution to phenylalanine, methionine, isoleucine, leucine, or valine resists MgtC degradation by FtsH. These data indicate that a large and hydrophobic side chain at 226th residue is required for protection from the FtsH-mediated MgtC proteolysis.  相似文献   

10.
Mycobacterium tuberculosis and Salmonella enterica cause very different diseases and are only distantly related. However, growth within macrophages is crucial for virulence in both of these intracellular pathogens. Here, we demonstrate that in spite of the phylogenetic distance, M. tuberculosis and Salmonella employ a parallel survival strategy for growth within macrophage phagosomes. Previous studies established that the Salmonella mgtC gene is required for growth within macrophages and for virulence in vivo. M. tuberculosis contains an open reading frame exhibiting 38% amino acid identity with the Salmonella MgtC protein. Upon inactivation of mgtC, the resulting M. tuberculosis mutant was attenuated for virulence in cultured human macrophages and impaired for growth in the lungs and spleens of mice. Replication of the mgtC mutant was inhibited in vitro by a combination of low magnesium and mildly acidic pH suggesting that the M. tuberculosis-containing phagosome has these characteristics. The similar phenotypes displayed by the mgtC mutants of M. tuberculosis and Salmonella suggest that the ability to acquire magnesium is essential for virulence in intracellular pathogens that proliferate within macrophage phagosomes.  相似文献   

11.
12.
13.
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization.  相似文献   

14.
15.
Macrophages function at the front line of immune defences against incoming pathogens. But the ability of macrophages to internalize bacteria, migrate, recruit other immune cells to the site of infection and influence the nature of the immune response can provide unintended benefits for bacterial pathogens that are able to subvert or co-opt these normally effective defences. This review highlights recent advances in our understanding of the many interference strategies that are used by bacterial pathogens to undermine macrophage signalling.  相似文献   

16.
Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens.  相似文献   

17.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

18.
19.
The macrophage receptor MARCO   总被引:4,自引:0,他引:4  
MARCO (macrophage receptor with collagenous structure) belongs to the class A scavenger receptor molecules. The structure and function of the molecule is described. Although it is expressed on subsets of macrophages, it can be upregulated on other macrophages after bacterial infection. The strategic position of MARCO-expressing cells in lymphoid organs suggests an important role for this bacteria-binding molecule in removal of pathogens.  相似文献   

20.
《Gene》1996,173(1):47-52
The green fluorescent protein (GFP) from Aequorea victoria is a novel fluorescent marker that has potential use in the study of bacterial pathogenicity. To explore some of the potential applications of GFP to the study of host-parasite interactions, we constructed two GFP expression vectors suitable for different facultative intracellular bacterial pathogens. The first expression vector was tested in the enteric pathogens, Salmonella typhimurium and Yersinia pseudotuberculosis, and the second vector tested in Mycobacterium marinum (Mm). Both expression vectors were found to be stable and to direct high levels of GFP synthesis. Standard epifluorescence microscopy was used to detect all three bacterial pathogenic species during the early and late stages of infection of live mammalian cells. Mm expressing gfp was also visualized in infected animal tissues, gfp expression did not adversely affect bacterial survival, nor did it compromise entry into mammalian cells or their survival within macrophages. In addition, all three gfp-expressing bacterial pathogens could be detected and sorted in a flow cytometer, either alone or in association with epithelial cells or macrophages. Therefore, GFP not only provides a convenient tool to image pathogenic bacteria, but allows the quantitative measurement of bacterial association with mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号