首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C H Pedemonte  J H Kaplan 《Biochemistry》1988,27(20):7966-7973
Treatment of purified renal Na,K-ATPase with dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) produces both reversible and irreversible inhibition of the enzyme activity. The reversible inhibition is unaffected by the presence of saturating concentrations of the sodium pump ligands Na+,K+, Mg2+, and ATP, while the inactivation is prevented by either ATP or K+. The kinetics of protection against inactivation indicate that K+ binds to two sites on the enzyme with very different affinities. Na+ ions with high affinity facilitate the inactivation by H2DIDS and prevent the protective effect of K+ ions. The H2DIDS-inactivated enzyme no longer exhibits a high-affinity nucleotide binding site, and the covalent binding of fluorescein isothiocyanate is also greatly reduced, but phosphorylation by Pi is unaffected. The kinetics of inactivation by H2DIDS were first order with respect to time and H2DIDS concentration. The enzyme is completely inactivated by the covalent binding of one H2DIDS molecule at pH 9 per enzyme phosphorylation site, or two H2DIDS molecules at pH 7.2. H2DIDS binds exclusively to the alpha-subunit of the Na,K-ATPase, locking the enzyme in an E2-like conformation. The profile of radioactivity, following trypsinolysis and SDS-PAGE, showed H2DIDS attachment to a 52-kDa fragment which also contains the ATP binding site. These results suggest that H2DIDS treatment modifies a specific conformationally sensitive amino acid residue on the alpha-subunit of the Na,K-ATPase, resulting in the loss of nucleotide binding and enzymatic activity.  相似文献   

2.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

3.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site.  相似文献   

4.
Irreversible inhibition, 99.8% of control values for chloride transport in human red blood cells, was obtained by well-established methods of maximum covalent binding of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The kinetics of the residual chloride transport (0.2%, 106 pmol.cm-2 x s-1) at 38 degrees C, pH 7.2) was studied by means of 36Cl- efflux. The outside apparent affinity, expressed by Ko1/2,c, was 34 mM, as determined by substituting external KCl by sucrose. The residual flux was reversibly inhibited by a reexposure to DIDS, and by 4,4'- dinitrostilbene-2,2'-disulfonate (DNDS), phloretin, salicylate, and alpha-bromo-4-hydroxy-3,5-dinitroacetophenone (Killer III) (Borders, C. L., Jr., D. M. Perez, M. W. Lafferty, A. J. Kondow, J. Brahm, M. B. Fenderson, G. L. Breisford, and V. B. Pett. 1989. Bioorganic Chemistry. 17:96-107), to approximately 0.001% of control cells, which is a flux as low as in lipid bilayers. The reversible DIDS inhibition of the residual chloride flux depended on the extracellular chloride concentration, but was not purely competitive. The half-inhibition concentrations at [Cl(o)] = 150 mM in control cells (Ki,o) and covalently DIDS-treated cells (Ki,c) were: DIDS, Ki,c = 73 nM; DNDS, Ki,o = 6.3 microM, Ki,c = 22 microM; phloretin, Ki,o = 19 microM, Ki,c = 17 microM; salicylate, Ki,o = 4 mM, Ki,c = 8 mM; Killer III, Ki,o = 10 microM, Ki,c = 10 microM.  相似文献   

5.
6.
The binding of 45Ca2+ to isolated band 3 protein, the anion transport protein of the human erythrocyte membrane, was studied by equilibrium dialysis. The protein was solubilized and purified by either the nonionic detergent Ammonyx-L0 or acetic acid. Each preparation of band 3 protein showed a single high-affinity Ca2+ binding site and several Ca2+ binding sites of lower affinity. The association constant of the high-affinity site was 4-13 X 10(4)M-1; it was only moderately dependent on ionic strength. Mg2+ effectively competed with Ca2+ for the site. Anion exchange across the human erythrocyte membrane is inhibited by micromolar concentrations of intracellular Ca2+. Our results suggest that this inhibition is due to the binding of the cation to a single site on band 3 protein.  相似文献   

7.
A model in which two positively-charged titratable sites enhance the affinity for anionic substrates can explain the increase in external iodide dissociation constant (K(O)(I)) with increasing pH(O) (Liu, S. J., F.-Y. Law, and P.A. Knauf. 1996.f Gen.Physiol. 107:271-291). If sulfate binds to the same external site as I-, this model predicts that the SO(4)= dissociation constant (K(O)(S)) should also increase. The data at pH 0 8.5 to 10 fit this prediction, and the pK for the titration is not significantly different from that (pKc) for the low-pK group that affects K(O)(1). The dissociation constant for the apparently competitive inhibitor, DNDS (4,4-dinitrostilbene-2,2'- disulfonate), also increases greatly as pH(O) increases. Particularly at high pH(O), a noncompetitive inhibition by DNDS is also evident. Increasing pH(O) from 7.2 to 11.2 increases the competitive dissociation constant by 700-fold, but the noncompetitive is only increased 20-fold. The pK values for these effects are similar to pKc for K(O)(1), as expected if DNDS binds near the external transport site, but it seems likely that additional titratable groups also affect DNDS binding. The apparent affinity for external Cl- is also affected by pH(O), in a manner similar to that observed for I-. Pretreatment with the amino-selective reagent, bis-sulfosuccinimidyl suberate (BSSS), decreases the apparent Cl- affinity at pH 8.5, but two titrations are still evident, the first (lower) of which decreases the apparent C- affinity, and the second of which surprisingly increases it. Thus, the BSSS-reactive amino groups (probably Lys-539 and Lys-851) do not seem to be involved in the titrations that affect Cl- affinity. In general, the data support the concept that a positively charged amino group (or groups), together with a guanidino group, plays an important role in the binding of substrates and inhibitors at or near the external transport site.  相似文献   

8.
The characteristics of the anion transport system in human erythrocyte, which can be modified by eosin 5-isothiocyanate (EITC), were studied using the pH titration method and by measuring the sulfate efflux. Based on the pH dependence of EITC binding to the erythrocyte ghosts, it was found that the reaction rate was maximal at about pH 6.4, and that the pH profile of EITC binding was similar to that of divalent anion transport. The interaction between EITC and ghosts was interpreted by a two-step reaction, a fast ionic-binding reaction and a slow covalent-binding reaction. The induced CD spectrum of the EITC-ghost system was also dependent on pH. The intensity of the CD band at 530 nm was decreased in acidic pH region, and the inflection point was observed at about pH 6.3, indicating a participation of the histidine residue in the interaction of EITC with band 3. In order to characterize the EITC-binding site, the kinetics of sulfate efflux in intact and EITC-modified cells were examined at various pH values. The inhibitory effect of EITC was dependent on pH. From the experimental results, the followings are suggested. The rate of ionic interaction in the early stage is much slower than that in a general ionic reaction. A conformational change may participate in the reaction. The conformation of the EITC-binding site depends on pH, relating to the dissociation of the histidine residues. The EITC molecules act also as a competitive inhibitor to the sulfate efflux after binding covalently to band 3 protein.  相似文献   

9.
Nucleosides cross the human erythrocyte membrane by a facilitated-diffusion process which is selectively inhibited by nanomolar concentrations of nitrobenzylthioinosine (NBMPR). The chemical asymmetry of the transporter was investigated by studying the effects of p-chloromercuriphenyl sulphonate (PCMBS) on uridine transport and high-affinity NBMPR binding in inside-out and right-side-out membrane vesicles, unsealed erythrocyte ghosts and intact cells. PCMBS was an effective inhibitor of the transporter (50% inhibition at 30 microM), but only when the organomercurial had access to the cytoplasmic membrane surface. PCMBS inhibition of NBMPR binding to ghosts was reversed by incubation with dithiothreitol. Both uridine and NBMPR were able to protect the transporter against PCMBS inhibition.  相似文献   

10.
Treatment of intact human erythrocytes with bis(sulfosuccinimidyl)suberate converted band 3 to two species with lower electrophoretic mobility in sodium dodecyl sulfate (SDS). The presence of the noncovalent anion transport inhibitor, 4,4'-dinitrostilbene-2,2'-disulfonate, promoted the lowest mobility form, while a closely related analogue, 4,4'-diisothiocyano-2,2'-stilbenedisulfonate, did not. Ferguson analysis of the electrophoretic behavior of the two slowly migrating bands strongly suggested that they represented dimers and tetramers of band 3. Increasing the temperature of the SDS solution to greater than 60 degrees C quantitatively converted the tetrameric species to the dimeric form. We conclude that band 3 can be intermonomerically cross-linked by bis(sulfosuccinimidyl)suberate as covalent dimers within two alternate quaternary forms in a manner modulated by the ligand occupying the intramonomeric stilbenedisulfonate site. In one form, band 3 covalent dimers are noncovalently associated as a SDS-resistant tetramer, while in the other form, covalent dimers are not so associated. There is no obvious relationship between ligand stereochemistry and the resulting quaternary form, suggesting that the two forms reflect alternate allosterically modulated porter quaternary structures. The significance of these two quaternary states to the transport or the ankyrin binding functions of band 3 is unknown.  相似文献   

11.
12.
Stilbenedisulfonates (S) constitute an important class of competitive inhibitors of the anion exchange (AE) function found in plasma membranes of various cell types. I present a brief summary of recent kinetic studies that provide insight into the mechanism of stilbenedisulfonate-chloride competition in binding to human erythrocyte band 3 (AE1) (B), the chloride-bicarbonate exchanger. Reversible stilbenedisulfonate binding follows a two-step mechanism (S + B <--> SB <--> SB*). Several lines of evidence are summarized that show that chloride, stilbenedisulfonates, and band 3 form a ternary complex, with chloride lowering stilbenedisulfonate affinity allosterically, by accelerating the rate of stilbenedisulfonate release. Of particular significance was our evidence demonstrating that extracellular chloride could accelerate stilbenedisulfonate release from its binding site on the outer surface of band 3 in resealed ghosts (i.e., acceleration in the release of a bound competitive inhibitor by a cis substrate). I suggest that the latter result may be consistent with our earlier proposal that band 3 follows a two-site ordered sequential mechanism, where two allosterically linked chloride binding transport sites move back and forth across the membrane together.  相似文献   

13.
External N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (Eo or EClo ) form. Since NAP-taurine prevents the conformational change from EClo to ECli , it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H2DIDS (4,4'-diisothiocyano-1,2- diphenylethane -2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H2DIDS reveals that the transport system is intrinsically asymmetric, such that when Cli = Clo, most of the unloaded transport sites face the cytoplasmic side of the membrane.  相似文献   

14.
A novel kinetic approach was used to measure monovalent anion binding to better define the mechanistic basis for competition between stilbenedisulfonates and transportable anions on band 3. An anion-induced acceleration in the release of 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) from its complex with band 3 was measured using monovalent anions of various size and relative affinity for the transport site. The K1/2 values for anion binding were determined and correlated with transport site affinity constants obtained from the literature and the dehydrated radius of each anion. The results show that anions with ionic radii of 120-200 pm fall on a well-defined correlation line where the ranking of the K1/2 values matched the ranking of the transport site affinity constants (thiocyanate < nitrate approximately bromide < chloride < fluoride). The K1/2 values for the anions on this line were about 4-fold larger than expected for anion binding to inhibitor-free band 3. Such a lowered affinity can be explained in terms of allosteric site-site interactions, since the K1/2 values decreased with increasing anionic size. In contrast, iodide, with an ionic radius of about 212 pm, had a 10-fold lower affinity than predicted by the correlation line established by the smaller monovalent anions. These results indicate that smaller monovalent anions have unobstructed access to the transport site within the band 3 / DBDS binary complex, while iodide experiences significant steric hindrance when binding. The observation of steric hindrance in iodide binding to the band 3 / DBDS binary complex, but not in the binding of smaller monovalent anions, suggests that the stilbenedisulfonate binding site is located at the outer surface of an access channel leading to the transport site.  相似文献   

15.
S M Waugh  P S Low 《Biochemistry》1985,24(1):34-39
Hemichromes, the precursors of red cell Heinz bodies, were prepared by treatment of native hemoglobin with phenylhydrazine, and their interaction with the cytoplasmic surface of the human erythrocyte membrane was studied. Binding of hemichromes to leaky red cell ghosts was found to be biphasic, exhibiting both high-affinity and low-affinity sites. The high-affinity sites were shown to be located on the cytoplasmic domain of band 3, since (i) glyceraldehyde-3-phosphate dehydrogenase, a known ligand of band 3, competes with the hemichromes for their binding sites, (ii) removal of the cytoplasmic domain of band 3 by proteolytic cleavage causes loss of the high-affinity sites, and (iii) the isolated cytoplasmic domain of band 3 interacts tightly with hemichromes, rapidly forming a pH-dependent, water-insoluble copolymer upon mixing in aqueous solution. Since the copolymer of hemichromes with the cytoplasmic domain of band 3 was readily isolatable, a partial characterization of its properties was conducted. The copolymer was shown to be of defined stoichiometry, containing approximately 2.5 hemichrome tetramers (or approximately 5 hemichrome dimers) per band 3 dimer, regardless of the ratio of hemichrome:band 3 in the initial reaction solution. The copolymer was found to be of macroscopic dimensions, generating particles which could be easily visualized without use of a microscope. The coprecipitation was also highly selective for hemichromes, since, in mixed solutions with native hemoglobin, only hemichrome was observed in the isolated pellet. Furthermore, no precipitate was ever observed upon mixing the cytoplasmic domain of band 3 with oxyhemoglobin, deoxyhemoglobin, (carbonmonoxy) hemoglobin, or methemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have examined the associations of purified red cell band 4.2 with red cell membrane and membrane skeletal proteins using in vitro binding assays. Band 4.2 bound to the purified cytoplasmic domain of band 3 with a Kd between 2 and 8 X 10(-7) M. Binding was saturable and slow, requiring 2-4 h to reach equilibrium. This finding confirms previous work suggesting that the principal membrane-binding site for band 4.2 lies within the 43-kDa cytoplasmic domain of band 3 (Korsgren, C., and Cohen, C. M. (1986) J. Biol. Chem. 261, 5536-5543). Band 4.2 also bound to purified ankyrin in solution with a Kd between 1 and 3.5 X 10(-7) M. As with the cytoplasmic domain of band 3, binding was saturable and required 4-5 h to reach equilibrium. Reconstitution with ankyrin of inside-out vesicles stripped of all peripheral proteins had no effect upon band 4.2 binding to membranes; similarly, reconstitution with band 4.2 had no effect upon ankyrin binding. This shows that ankyrin and band 4.2 bind to distinct loci within the 43-kDa band 3 cytoplasmic domain. Coincubation of ankyrin and band 4.2 in solution partially blocked the binding of both proteins to the membrane. Similarly, coincubation of bands 4.1 and 4.2 in solution partially blocked binding of both to membranes. In all cases, the data suggest the possibility that domains on each of these proteins responsible for low affinity membrane binding are principally affected. The data also provide evidence for an association of band 4.2 with band 4.1. Our results show that band 4.2 can form multiple associations with red cell membrane proteins and may therefore play an as yet unrecognized structural role on the membrane.  相似文献   

17.
Reconstitution of glucose transport using human erythrocyte band 3   总被引:4,自引:0,他引:4  
A chromosomal histone, H2S, specific to the mouse testis has been purified. Amino acid analysis indicated lack of cysteine and a high basic amino acid content typical of histones. Specific antibodies against histones H2S have been generated in rabbits and partially purified using (NH4)2SO4 precipitation and ion-exchange chromatography. Protein transfer experiments indicate presence of antigenically similar histones in the rat and rabbit testes but not in the guinea pig and dog testes. In addition, histone complement of somatic tissues such as lung, kidney, liver and spleen lacked antigenically similar proteins. Immunocytochemical studies using peroxidase-antiperoxidase complex indicated presence of immunoreactive cells in the seminiferous epithelium which were lacking in the interstitium. These data demonstrate histone H2S to be a unique histone associated with spermatogenesis in the mouse.  相似文献   

18.
19.
The hydrolysis of p-nitrophenyl phosphate catalyzed by the erythrocyte membrane Ca2+-ATPase is stimulated by low concentrations of the compound 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a classic inhibitor of anion transport. Enhancement of the phosphatase activity varies from 2- to 6-fold, depending on the Ca2+ and calmodulin concentrations used. Maximum stimulation of the pNPPase activity in ghosts is reached at 4-5 microM DIDS. Under the same conditions, but with ATP rather than pNPP as the substrate, the Ca2+-ATPase activity is strongly inhibited. Activation of pNPP hydrolysis by DIDS is equally effective for both ghosts and purified enzyme, and therefore is independent of its effect as an anion transport inhibitor. Binding of the activator does not change the Ca2+ dependence of the pNPPase activity. Stimulation is partially additive to the activation of the pNPPase activity elicited by calmodulin and appears to involve a strong affinity binding or covalent binding to sulfhydryl groups of the enzyme, since activation is reversed by addition of dithiothreitol but not by washing. The degree of activation of pNPP hydrolysis is greater at alkaline pH values. DIDS decreases the apparent affinity of the enzyme for pNPP whether in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+ (with 5 microM DIDS the observed Km shifts from 4.8 +/- 1.4 to 10.1 +/- 2.6, from 3.8 +/- 0.4 to 7.0 +/- 0.8, and from 9.3 +/- 0.7 to 15.5 +/- 1.1 mM, respectively). However, the pNPPase rate is always increased (as above, from 3.6 +/- 0.6 to 11.2 +/- 1.7, from 4.4 +/- 0.5 to 11.4 +/- 0.9, and from 2.6 +/- 0.6 to 18.6 +/- 3.9 nmol mg-1 min-1, in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+, respectively). ATP inhibits the pNPPase activity in the absence of Ca2+, both in the presence and in the absence of DIDS. Therefore, kinetic evidence indicates that DIDS does more than shift the enzyme to the E2 conformation. We propose that the transition from E2 to E1 is decreased and a new enzyme conformer, denoted E2*, is accumulated in the presence of DIDS.  相似文献   

20.
Glycosylation site of band 3, the human erythrocyte anion-exchange protein   总被引:2,自引:0,他引:2  
D G Jay 《Biochemistry》1986,25(3):554-556
The band 3 protein has a single glycosylation site on the carboxy-terminal 55 000-dalton tryptic fragment that defines a sequence of the polypeptide on the extracytoplasmic surface of the cell. To locate this site, a novel procedure involving end labeling of the 55 000-dalton tryptic fragment was used. Peptides resulting from partial proteolysis of the end radiolabeled glycoprotein were separated by lectin-Sepharose chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The smallest fragment observed defined the distance between the glycosylation site and the amino terminus. The procedure was first tested on a protein for which the location of the glycosylation site is known, HLA-B7 antigen. It was then used to show that the glycosylation site of human band 3 is 28 000 +/- 3000 daltons from the carboxy terminus of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号