首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Lechner  J Carbon 《Cell》1991,64(4):717-725
A key protein component (CBF3) of the budding yeast (S. cerevisiae) centromere/kinetochore has been purified and characterized. CBF3 is a 240 kd multisubunit protein complex that binds specifically to the yeast wild-type centromere DNA (CEN), but not to nonfunctional CEN DNA containing a single base substitution in the critical CDEIII consensus sequence. When purified by affinity chromatography, CBF3 contains three protein components: CBF3A (110 kd), CBF3B (64 kd), and CBF3C (58 kd). Highly purified CBF3 requires the presence of a separate assembly factor or chaperone activity to bind to CEN DNA. Treatment with phosphatase inactivates CBF3, indicating that at least one of the CBF3 subunits must be phosphorylated for DNA binding to occur. A 56 bp region including the 26 bp CDEIII consensus is protected from DNAase I cleavage in the CBF3-CEN DNA complex.  相似文献   

2.
Oligosaccharyltransferase has been purified from canine microsomal membranes as a protein complex with three nonidentical subunits of 66, 63/64, and 48 kDa. The 66- and 63/64-kDa subunits were found to be identical to ribophorins I and II, respectively. The ribophorins are integral membrane glycoproteins that were previously shown to be localized exclusively to the rough endoplasmic reticulum. The 48-kDa subunit (OST48) of the oligosaccharyltransferase complex is not a glycoprotein and is not recognized by antibodies to either ribophorin. Here, we describe the characterization of a cDNA clone that encodes OST48. Like ribophorins I and II, OST48 was found to be an integral membrane protein, with the majority of the polypeptide located within the lumen of the endoplasmic reticulum. OST48 does not show significant amino acid sequence homology to either ribophorin I or II. A 45-kDa integral membrane protein, designated WBP1, from the yeast Saccharomyces cerevisiae was found to be 25% identical in sequence to OST48. Recently, WBP1 was shown to be essential for in vivo and in vitro expression of oligosaccharyltransferase activity in yeast. We conclude that OST48 and WBP1 are homologous gene products.  相似文献   

3.
To understand the requirements for binding to G protein betagamma subunits, phage-displayed random peptide libraries were screened using immobilized biotinylated betagamma as the target. Selected peptides were grouped into four different families based on their sequence characteristics. One group (group I) had a clear conserved motif that has significant homology to peptides derived from phospholipase C beta (PLC beta) and to a short motif in phosducin that binds to G protein beta subunits. The other groups had weaker sequence homologies or no homology to the group I sequences. A synthetic peptide from the strongest consensus group blocked activation of PLC by G protein betagamma subunits. The peptide did not block betagamma-mediated inhibition of voltage-gated calcium channels and had little effect on betagamma-mediated inhibition of Gs-stimulated type I adenylate cyclase. Competition experiments indicated that peptides from all four families bound to a single site on betagamma. These peptides may bind to a protein-protein interaction 'hot spot' on the surface of betagamma subunits that is used by a subclass of effectors.  相似文献   

4.
S Misra  D C Rio 《Cell》1990,62(2):269-284
Drosophila P transposable elements encode two proteins, an 87 kd transposase protein and a 66 kd protein that has been hypothesized to repress transposition. We have made germline transformants carrying modified P element derivatives that encode only the 66 kd protein and shown that these elements repress transposase activity in both the germline and the soma. The position of these elements in the genome quantitatively affected their ability to negatively regulate transposase and to express the 66 kd protein. Single 66 kd element-containing strains did not exhibit the maternal inheritance of P cytotype characteristic of P strains. However, we demonstrated that a true P strain produced higher levels of the 66 kd protein during oogenesis than single 66 kd P elements. Thus, the expression of the 66 kd repressor during oogenesis may be a major determinant of the maternal effect of P cytotype.  相似文献   

5.
J Germino  D Bastia 《Cell》1983,34(1):125-134
Initiation of DNA replication in plasmid R6K is potentiated by the plasmid-encoded 35 kd replication initiator protein. We had previously reported that the initiator bound to two regions of R6K DNA called Site I and Site II. Using DNAase I footprinting technique we have demonstrated that the initiator bound to seven tandem repeats of a 22 bp long sequence in Site I. In Site II, the initiator bound to a single repeat having the same consensus sequence and to two partial repeats that most likely overlap the promoter of the initiation protein cistron. Using dimethyl sulfate as a chemical probe, we have determined the purine residues of Site I and Site II that make contact with the initiator protein. The results show that eight out of nine contact points per repeat in Site I were located on one of the two strands of the DNA. The binding of the initiator to the Site II sequence could explain the observed autoregulation of the synthesis of the initiator protein by promoter occlusion.  相似文献   

6.
Affinity chromatography was used to identify a putative cell surface receptor for fibronectin. A large cell-attachment-promoting fibronectin fragment was used as the affinity matrix, and specific elution was effected by using synthetic peptides containing the sequence Arg-Gly-Asp, which is derived from the cell recognition sequence in the fibronectin cell attachment site. A 140 kd protein was bound by the affinity matrix from octylglucoside extracts of MG-63 human osteosarcoma cells and specifically eluted with the synthetic peptide Gly-Arg-Gly-Asp-Ser-Pro. The 140 kd protein was labeled by cell surface specific radioiodination and became incorporated into liposomes at a high efficiency. Liposomes containing this protein showed specific affinity toward fibronectin-coated surfaces, and this binding could be selectively inhibited by the synthetic cell-attachment peptide but not by inactive peptides. Affinity chromatography on wheat germ agglutinin-Sepharose showed that the 140 kd protein is a glycoprotein and, in combination with the fibronectin fragment chromatography, gave highly enriched preparations of the 140 kd protein. These properties suggest that the 140 kd glycoprotein is a membrane-embedded cell surface protein directly involved in the initial step of cell adhesion to fibronectin substrates.  相似文献   

7.
J Inoue  L D Kerr  A Kakizuka  I M Verma 《Cell》1992,68(6):1109-1120
A cDNA corresponding to the 2.6 kb NF-kappa B mRNA species present in a variety of lymphoid cell lines has been molecularly cloned. The deduced 607 amino acid sequence is identical to the sequence of the C-terminal region of 110 kd NF-kappa B protein. A 70 kd protein can be identified in lymphoid cells using antibodies raised against the C-terminal region of p110 NF-kappa B. Comparison of the two-dimensional tryptic peptide maps of the 70 kd protein expressed in cells and the in vitro translated product encoded by the cDNA display extensive homology. The 70 kd protein expressed in bacteria prevents sequence-specific DNA binding of p50-p65 NF-kappa B heterodimer, p50 homodimer, and c-rel. p70 also interferes with transactivation by c-rel and prevents its nuclear translocation. The 70 kd protein, predominantly found in lymphoid cells, is a new member of the I kappa B family of proteins and is referred to as I kappa B gamma.  相似文献   

8.
We have explored the structure, function, and membrane topography of enzymes that recognize dolichols and participate in glycosylation pathways in the endoplasmic reticulum. Enzymes that interact with dolichols, including dolichyl phosphate mannose (Dol-P-Man) synthase and UDP-GlcNAc:Dol-P-transferase, revealed a conserved amino acid sequence in membrane-spanning regions. The consensus is Phe-Ile/Val-Xaa-Phe/Try-Xaa-Xaa-Ile-Pro-Phe-Xaa-Phe/Tyr, and we propose it is involved in dolichol recognition. We have used yeast mutants to demonstrate the role of dolichols in three glycosylation pathways. At its nonpermissive temperature, a Dol-P-Man synthase mutant (dpm1) was blocked in N-glycosylation, O-mannosylation, and glycosyl phosphoinositol membrane anchoring of protein, most likely because Dol-P-Man serves as mannosyl donor in all three pathways. The secretion mutant sec59 has a similar phenotype to dpm1, and the presence of a dolichol recognition sequence in the SEC59 protein gave a clue to its defect, which is in dolichol kinase. Comparison of yeast glycosylation mutant suggests that the ability to carry out N-glycosylation alone is sufficient to allow yeast to secrete glycoproteins and that an N-linked saccharide of a minimum size must be attached to proteins for cells to be able to secrete them and maintain a functional secretory pathway.  相似文献   

9.
Actin filament capping protein from bovine brain.   总被引:10,自引:2,他引:8       下载免费PDF全文
An actin filament capping protein has been purified from bovine brain. The protein has a native mol. wt. of 63 kilodaltons (kd) with subunits of 36 kd and 31 kd and is globular in shape. It nucleates actin polymerization, inhibits filament elongation and filament interactions, and decreases the steady state viscosity of F-actin in substoichiometric amounts (molar ration 1:1000). In addition, the protein increases the critical concentration for actin polymerization. Neither Ca2+ nor calmodulin affects it action. All these effects can be explained by the binding of the protein to the 'barbed' end of actin filaments leading to a blockade of actin monomer addition at the preferred growing end. This is directly demonstrated by electron microscopy. Concerning the polypeptide composition, Ca2+-independence, mode, and stoichiometry of actin interaction, the protein is similar to the capping protein, previously isolated from Acanthamoeba.  相似文献   

10.
H Watanabe  T Wada    H Handa 《The EMBO journal》1990,9(3):841-847
  相似文献   

11.
J F Hofmann  S M Gasser 《Cell》1991,64(5):951-960
We have identified a yeast protein that binds specifically to the ARS consensus sequence. By two-step chromatography we have purified the factor to apparent homogeneity as a single polypeptide of 67 kd. The purified ARS consensus-binding protein (ACBP) recognizes the ARS consensus of the four genomic ARS elements tested, binding preferentially to the T-rich single strand. Point mutations in the consensus significantly reduce the affinity of the single-strand binding. At the histone H4 ARS, ACBP recognizes both the perfect ARS consensus and a 9/11 match 3' of it. These two binding sites correlate with the boundaries of the minimal functional H4 ARS element. A similar configuration of binding sites is found at ARS1. We propose a model implicating this factor in an early step of the initiation of DNA replication.  相似文献   

12.
M Watanabe  G Blobel 《Cell》1989,58(4):695-705
A purified 64 kd protein, consisting of four identical subunits of the 16 kd SecB, binds to the signal sequence of preproteins prior to their translocation across inverted vesicles (INV) derived from the E. coli plasma membrane. The purified SecB tetramer competes with canine signal recognition particle (SRP) in signal sequence binding and thus behaves as a prokaryotic equivalent of SRP. As shown by cell fractionation and immunoblot analysis with anti-SecB antibodies, SecB is a cytosolic protein. An E. coli supernatant depleted of SecB after passage through an anti-SecB Sepharose column retains full translation activity but is unable to support translocation into added INV. Translocation into INV is fully restored by readdition of purified SecB.  相似文献   

13.
14.
A 100 kd protein was isolated from tissue and cell extracts by affinity chromatography on a synthetic peptide representing the cytoplasmic domain of the fibronectin receptor beta subunit. The 100 kd protein also bound to native fibronectin receptor, and this binding could be reversed with EDTA. Calcium may be the divalent cation required for the binding since the 100 kd protein was found to bind 45Ca2+. The N-terminal amino acid sequence of the 100 kd protein was not similar to any sequence in a protein data base. Immunofluorescent staining of cells cultured on fibronectin showed the 100 kd protein coinciding with the fibronectin receptor beta subunit in sites of substrate contact. Therefore this protein, which we term fibulin, interacts with the fibronectin receptor in vitro and associates with the receptor in vivo. Fibulin is a potential mediator of interactions between adhesion receptors and the cytoskeleton.  相似文献   

15.
A 2.5 kb cDNA clone encoding the mouse 66 kd neurofilament protein (NF-66) was isolated and sequenced. The deduced protein sequence contains 501 amino acid residues. Comparison of the mouse, rat and human NF-66 indicated >90% homology in protein sequence and 85% homology in coding nucleotide sequence. A high degree of homology was observed between NF-66 and other intermediate filament proteins especially in the α-helical domain. Zooblot analyses suggested that the putative ancestral gene for vimentin and NF-66 was detectable in the avian. By comparison, the ancestral sequence for GFAP appeared after that for vimentin. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

16.
T Fujimura  R B Wickner 《Cell》1988,55(4):663-671
L-A double-stranded RNA (dsRNA) replicates in vivo in yeast in a conservative, asynchronous (first [+] strand then [-] strand), intraviral process. New particles are formed by packaging (+) strands. Added viral (+) single-stranded RNA (ssRNA) is specifically bound by empty virus-like particles (VLPs) and, in a reaction requiring a host factor, is converted in vitro to dsRNA. We find that the isolated binding complex replicates only if it was formed in the presence of the host factor. The VLP minor 180 kd protein, but not the major coat protein, has ssRNA binding activity on Western blots. The 180 kd protein shares a common antigenic domain with the major coat protein, the latter known to be encoded by L-A dsRNA. The 180 kd protein, but not the major coat protein, also shares an antigenic domain with a sequence encoded by the 3' end of the L-A (+) strand. Thus the 180 kd protein is also encoded by L-A dsRNA and consists of a major coat protein domain and a ssRNA binding domain.  相似文献   

17.
We have purified the 36 and 63 kd cellular proteins known to associate with polyomavirus middle and small tumor (T) antigens and SV40 small t antigen. Microsequencing of the 36 kd protein indicated that it was probably identical to the catalytic subunit of protein phosphatase 2A (PP2A). Identity was confirmed by comigration on two-dimensional (2D) gels and by 2D analysis of complete chymotryptic digests. In addition, PP2A-like phosphatase activity was detected in immunoprecipitates of wild-type middle T. Immunoblotting experiments, comigration on 2D gels, and 2D analysis of limit chymotryptic digests demonstrated that the 63 kd protein, present in the middle T complex in approximately equimolar ratio to the 36 kd protein, is a known regulatory subunit of the PP2A holoenzyme. Finally, the 36 kd PP2A catalytic subunit can be immunoprecipitated by anti-pp60c-src antisera only from cells expressing wild-type middle T. These results suggest that complex formation between PP2A and T antigens may be important for T antigen-mediated transformation.  相似文献   

18.
The mitochondrial NADH-ubiquinone reductase (complex I) is an assembly of approximately 26 different polypeptides. In vertebrates and invertebrates, seven of its subunits are the products of genes in the mitochondrial DNA, and homologues of these genes have been found previously in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum, although their function in the chloroplast is unknown. The remainder of the subunits of the mitochondrial complex are nuclear gene products that are imported into the organelle, amongst them the 49 kd subunit, a component of the iron--sulphur subcomplex of the enzyme. In the present work, the N-terminal sequence of this protein has been determined, and this has been used to design two mixtures of synthetic oligonucleotides, each containing 32 different sequences 17 bases long. These mixtures have been used as hybridization probes to isolate cDNA clones from a bovine library. The DNA sequences of these clones have been determined and they encode the mature 49 kd protein, with the exception of amino acids 1 and 2. The protein sequence of 430 amino acids is closely related to those of proteins that are encoded in open reading frames (ORFs) present in the chloroplast genomes of M.polymorpha and N.tabacum. Only one cysteine is conserved and the sequences provide no indication that the 49 kd protein contains iron--sulphur centres. These ORFs are found in the single copy regions of chloroplast DNA in close proximity to four of the homologues of the mammalian mitochondrial genes that encode subunits of complex I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We found in the Escherichia coli genome sequence a homologue of RER2, a Saccharomyces cerevisiae gene required for proper localization of an endoplasmic reticulum protein, and designated it rth (RER2 homologue). The disruption of this gene was lethal for E. coli. To reveal its biological function, we isolated temperature-sensitive mutants of the rth gene. The mutant cells became swollen and burst at the nonpermissive temperature, indicating that their cell wall integrity was defective. Further analysis showed that the mutant cells were deficient in the activity of cis-prenyltransferase, namely, undecaprenyl diphosphate synthase, a key enzyme of the carrier lipid formation of peptidoglycan synthesis. The cellular level of undecaprenyl phosphate was in fact markedly decreased in the mutants. These results are consistent with the fact that the Rer2 homologue of Micrococcus luteus shows undecaprenyl diphosphate synthase activity (N. Shimizu, T. Koyama, and K. Ogura, J. Biol. Chem. 273:19476-19481, 1998) and demonstrate that E. coli Rth is indeed responsible for the maintenance of cell wall rigidity. Our work on the yeast rer2 mutants shows that they are defective in the activity of cis-prenyltransferase, namely, dehydrodolichyl diphosphate synthase, a key enzyme of dolichol synthesis. Taking these data together, we conclude that the RER2 gene family encodes cis-prenyltransferase, which plays an essential role in cell wall biosynthesis in bacteria and in dolichol synthesis in eukaryotic cells and has been well conserved during evolution.  相似文献   

20.
Drosophila P element transposase recognizes internal P element DNA sequences   总被引:24,自引:0,他引:24  
P D Kaufman  R F Doll  D C Rio 《Cell》1989,59(2):359-371
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号