首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sindbis Virus-induced Viral Ribonucleic Acid Polymerase   总被引:17,自引:15,他引:2       下载免费PDF全文
A cytoplasmic structure containing the viral ribonucleic acid (RNA) polymerase has been isolated by sucrose density centrifugation from cells infected with Sindbis virus. Uninfected cells did not contain any such structure. Preliminary experiments indicated that the structure may be associated with membranes. This structure incorporated (3)H-guanosine triphosphate in vitro in the absence of added template. The RNA synthesized in vitro by the enzyme consisted of single-stranded 40S RNA, the ribonuclease-resistant replicative form, and possibly the replicative intermediate form of viral RNA. The products formed in vitro by the enzyme are identical in sedimentation rates to those formed in the infected cells in vivo.  相似文献   

2.
The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus.  相似文献   

3.
4.
5.
Poliovirus ribonucleic acid (RNA) polymerase crude extracts could be stored frozen in liquid nitrogen without loss of activity or specificity. The major in vitro product of these extracts was viral single-stranded RNA. However, after short periods of incubation with radioactive nucleoside triphosphates, most of the incorporated label was found in replicative intermediate. When excess unlabeled nucleoside triphosphate was added, the label was displaced from the replicative intermediate and accumulated as viral RNA. It is concluded from this experiment that the replicative intermediate is the precursor to viral RNA. In addition, some of the label was chased into double-stranded RNA. The implications of this finding are discussed.  相似文献   

6.
7.
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.  相似文献   

8.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. II. General properties of the viral-induced ribonucleic acid polymerase. J. Bacteriol. 91:2327-2332. 1966.-Mengovirus induces the appearance of a ribonucleic acid (RNA) polymerase activity in Novikoff hepatoma cells which is readily distinguished from the deoxyribonucleic acid (DNA)-dependent RNA polymerase since it is not inhibited by actinomycin D or deoxyribonuclease, but is inhibited by ammonium sulfate, and is stable at -17 C. The incorporation of uridine into RNA by infected cells in the presence of actinomycin D does not reflect the viral polymerase activity as measured in cell-free preparations. The viral-induced RNA polymerase is produced in a biphasic fashion. Puromycin inhibits the production of viral polymerase, and in its presence the enzyme appears to be unstable between 4 and 6 hr. Puromycin also prevents the secondary rise in polymerase which begins at the end of replicative cycle. Under these conditions, however, the polymerase appears to be stable. The overall data indicated that some unspecified process is responsible for the apparent instability of viral-induced RNA polymerase between 4 and 6 hr and that it becomes inoperative toward the end of the replicative cycle.  相似文献   

9.
Membranes from cells infected with Sindbis virus had associated with them viral ribonucleic acid (RNA) polymerase and about 60 to 70% of the viral RNA labeled when short pulses were used. This RNA contained most of the replicative intermediate and replicative form of viral RNA found in the infected cells. The use of "Mg(2+) sarkosyl crystals" permitted the isolation of membrane-bound nucleic acids and allowed the demonstration that Sindbis virus RNA was synthesized on a membrane-viral RNA complex. Viral RNA from the infecting virions first became associated with the membranes during the latent period and, subsequently, slowly detached. The attachment of the viral RNA to the membranes did not require active viral RNA polymerase, since RNA from ts6, an RNA(-) temperature-sensitive mutant of Sindbis virus, associated with cellular membranes at a nonpermissive temperature. However, the subsequent detachment of the RNA from the membranes was restricted in the absence of viral RNA synthesis. The results indicate that association of viral RNA with cellular membranes may represent an early step occurring during the replication of Sindbis virus RNA.  相似文献   

10.
Viral ribonucleic acid (RNA) from Semliki Forest virus- and Sindbis virus-infected cells was analyzed by electrophoresis on polyacrylamide gels. In contrast to earlier results obtained by sucrose density gradient centrifugation, all of the known viral RNA forms (i.e., the 42S, 26S, replicative form, and replicative intermediate) were very clearly separated. The high resolution of the electrophoretic method permitted the identification of two new single-stranded RNA species. In addition, the replicative form was shown to be heterogeneous and to consist of at least two forms. The results suggested that the replicative forms occur in vivo although in relatively small amounts.  相似文献   

11.
1. The 5'-terminal sequence of the RNA transcribed from bacteriophage fd replicative form DNA under the control of promotor region I has been determined to be ppp(Gp)nUpApApApGpApCpCpUpGpApUpUp. . . 2. This sequence is complementary to the 5'-terminal sequence of the minus strand of the corresponding RNA polymerase binding site I, the starting point for RNA synthesis lying approximately in the middle of the binding site. 3. This initial sequence is also transcribed faithfully from isolated complexes of RNA polymerase and binding site I, obtained by DNase digestion of complexes between RNA polymerase and fd replicative form DNA. These highly stable complexes can not be reconstituted from binding site and enzyme. 4. It is concluded that RNA polymerase binding site and initiation site are identical parts of a promoter region, and that no "drift" between these sites is required as a step in RNA chain initiation. An additional non-transcribed outside region is implicated as essential for full promoter function.  相似文献   

12.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J. Bacteriol. 91:2317-2326. 1966.-The replication of mengovirus was studied in two strains of Novikoff (rat) hepatoma cells propagated in vitro. The replicative cycle in both strains required 6.5 to 7 hr. Infection resulted in a marked depression of ribonucleic acid (RNA) and protein synthesis by strain N1S1-63. Inhibition of RNA synthesis was reflected by a decrease in the deoxyribonucleic acid (DNA)-dependent RNA polymerase activity of isolated nuclei. Mengovirus had no effect on either protein or RNA synthesis or on the DNA-dependent RNA polymerase activity of a second strain, N1S1-67. The time course of viral-induced synthesis of RNA by cells was studied in cells treated with actinomycin D. It was first detectable between 2.5 and 3 hr after infection and continued until 6.5 to 7 hr. The formation of mature virus was estimated biochemically by measuring the amount of RNA synthesized as a result of viral infection which was resistant to degradation by ribonuclease in the presence of deoxycholate. Approximately 70% of the deoxycholate-ribonuclease-resistant RNA was located in mature virus, and the remainder was double-stranded. The formation of mature virus began about 45 min after viral-directed (actinomycin-resistant) synthesis of RNA was detectable in the cell, and only about 18 to 20% of the total RNA synthesized was incorporated into virus. Release of virus from cells began about 1 hr after maturation was first detectable. Release of virus from cells was accompanied by a loss of a large proportion of their cytoplasmic RNA and protein.  相似文献   

13.
The influenza A virus nucleoprotein (NP) is a phosphoprotein that encapsidates the viral genomic RNA. To map the in vivo phosphorylation site(s) of this protein, 32P-labeled NP was purified from cell cultures infected with influenza virus A/Victoria/3/75 by immunoaffinity chromatography. The purified protein was then subjected to chemical digestion with formic acid, which cleaves proteins at Asp-Pro bonds, and the resulting products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two of the phosphorylated products obtained were identified as fragments corresponding to the N-terminal 88 amino acids and to the C-terminal 196 residues of the NP. To identify the phosphate acceptor site(s) at the N-terminal phosphorylated region of NP, each of the seven serines within this region was individually changed to alanine by site-directed mutagenesis. The mutant proteins were then transiently expressed in mammalian cells and analyzed for their phosphorylation state. It was observed that the S-to-A mutation at position 3 drastically reduced the amount of 32P label incorporated into NP, whereas the other substitutions did not have a discernible effect on the phosphorylation level of the protein. In addition, all serine-altered proteins were tested for their functionality in an artificial system in which expression of a synthetic chloramphenicol acetyl-transferase RNA molecule is driven by influenza virus proteins synthesized from cloned genes. The results obtained demonstrate that all mutant proteins were competent to cooperate with the subunits of the viral polymerase for expression of the synthetic virus-like chloramphenicol acetyltransferase RNA in vivo. These data are discussed regarding the possible roles of NP phosphorylation for the viral replicative cycle.  相似文献   

14.
15.
16.
HeLa cells infected with human rhinovirus type 2 synthesize a mixture of single-and double-stranded ribonucleic acid (RNA). The RNA synthesized by the membrane-bound RNA polymerase complex in vitro is also a mixture of single- and double-stranded RNA, whereas the deoxycholate-treated RNA polymerase complex synthesized only double-stranded RNA. Although twice as much cell-associated viral RNA is synthesized in vivo at 34 C than at 37 C, there is no difference in the rate of RNA synthesized in vitro at 34 C and 37 C by the polymerase complex. The RNA polymerase complex, after treatment with deoxycholate, sediments as a broad peak with an average sedimentation value of 120S.  相似文献   

17.
The synthesis of both strands of CaMV-DNA has been studied in vitro using viral replication complexes obtained by hypotonic extraction of infected plant organelles. Hybridization of the DNA synthesized in vitro to single stranded CaMV DNA probes cloned in bacteriophage M 13 confirmed that the 35 S RNA served as a template for the synthesis of the (–) DNA strand. The response of CaMV DNA synthesis to various inhibitors suggests that a single enzyme directs both steps of the replication cycle. A comparative activity gel analysis of the DNA polymerases present in nuclear extracts from healthy and CaMV-infected turnips revealed an increase of a DNA polymerase species migrating in the 75 Kd range in infected tissue. When the enzyme activity associated with the isolated replicative complexes was similarly analyzed, the 75 Kd polymerase was markedly predominant, confirming that DNA polymerases of the -type (MW in the 110 Kd range) are not involved in the aphidicolin-insensitive CaMV DNA replication. It seems therefore increasingly probable that CaMV codes for its own polymerase.  相似文献   

18.
19.
The synthesis of 69 phage-specific polypeptides during the infection of Bacillus subtilis with bacteriophage SP82 was detected by pulse-labeling, one-dimensional electrophoresis, and autoradiography. SP82 virions were found to contain approximately 22 polypeptides, most of which were synthesized late in infection; evidence was obtained for the processing of the major virion protein. RNAs extracted at different times during infection were translated by using an Escherichia coli cell-free extract. Only smaller-molecular-weight peptides were produced efficiently in vitro; in the 9,000- to 60,000-molecular-weight range, 50 to 60% of the peptides synthesized in vivo were produced by translation of RNAs extracted from infected cells. Eight of the virion peptides were produced by in vitro translation of RNAs extracted from infected cells. RNAs were synthesized under defined conditions by RNA polymerase extracted from uninfected B. subtilis and by polymerases isolated from cells 8 and 20 min after infection with SP82. Translation of these RNAs yielded characteristic and different patterns of polypeptides. Nine of the 12 polypeptides produced by translation of RNAs synthesized by the host polymerase corresponded in mobility to peptides appearing in vivo in the 0 to 3 and 3 to 6 min intervals of pulse-labeling after infection; 12 of the 25 peptides synthesized from RNAs produced by polymerase extracted 8 min after infection corresponded in mobility to peptides detected in vivo 8 min after infection, and 15 of the 22 peptides directed by RNAs made by the polymerase isolated 20 min after infection corresponded to peptides present in vivo late in infection. Five of the peptides produced in vitro from the latter RNA corresponded to virion peptides.  相似文献   

20.
It is demonstrated that after infection of the appropriate minicell-producing strain of Escherichia coli with the filamentous bacteriophage M13, its replicative form DNA is segregated into minicells. Consequently these minicells have acquired the capability to direct the synthesis of phage-specific RNA and protein. Comparision of the electrophoretic mobilities of phage-specific RNA species made in vitro with those made in M13 replicative form DNA harbouring minicells, have indicated that almost all in vitro synthesized G-start RNAs have an equivalent among the in vivo synthesized RNA products. Furthermore it could be demonstrated that in M13 replicative form DNA harbouring minicells the phage-specific proteins encoded by genes III, IV, V and VIII are made. In addition the synthesis of a phage-specific polypeptide (molecular weight approx. 3000) co-migrating with the recently discovered capsid protein (designated C-protein) could be demonstrated. The meaning of these results for the resolution of the regulatory mechanisms operative during the life cycle of this phage will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号