首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

2.
Phagocytosis and the ensuing NADPH-mediated respiratory burst are important aspects of microglial activation that require calcium ion (Ca(2+)) influx. However, the specific Ca(2+) entry pathway(s) that regulates this mechanism remains unclear, with the best candidates being surface membrane Ca(2+)-permeable ion channels or Na(+)/Ca(2+) exchangers. In order to address this issue, we used quantitative real-time RT-PCR to assess mRNA expression of the Na(+)/Ca(2+) exchangers, Slc8a1-3/NCX1-3, before and after phagocytosis by rat microglia. All three Na(+)/Ca(2+) exchangers were expressed, with mRNA levels of NCX1 > NCX3 > NCX2, and were unaltered during the one hour phagocytosis period. We then carried out a biophysical characterization of Na(+)/Ca(2+) exchanger activity in these cells. To investigate conditions under which Na(+)/Ca(2+) exchange was functional, we used a combination of perforated patch-clamp analysis, fluorescence imaging of a Ca(2+) indicator (Fura-2) and a Na(+) indicator (SBFI), and manipulations of membrane potential and intracellular and extracellular ions. Then, we used a pharmacological toolbox to compare the contribution of Na(+)/Ca(2+) exchange with candidate Ca(2+)-permeable channels, to the NADPH-mediated respiratory burst that was triggered by phagocytosis. We find that inhibiting the reversed mode of the Na(+)/Ca(2+) exchanger with KB-R7943, dose dependently reduced the phagocytosis-stimulated respiratory burst; whereas, blockers of store-operated Ca(2+) channels or L-type voltage-gated Ca(2+) channels had no effect. These results provide evidence that Na(+)/Ca(2+) exchangers are potential therapeutic targets for reducing the bystander damage that often results from microglia activation in the damaged CNS.  相似文献   

3.
4.
Cation/Ca(2+) exchangers are an essential component of Ca(2+) signaling pathways and function to transport cytosolic Ca(2+) across membranes against its electrochemical gradient by utilizing the downhill gradients of other cation species such as H(+), Na(+), or K(+). The cation/Ca(2+) exchanger superfamily is composed of H(+)/Ca(2+) exchangers and Na(+)/Ca(2+) exchangers, which have been investigated extensively in both plant cells and animal cells. Recently, information from completely sequenced genomes of bacteria, archaea, and eukaryotes has revealed the presence of genes that encode homologues of cation/Ca(2+) exchangers in many organisms in which the role of these exchangers has not been clearly demonstrated. In this study, we report a comprehensive sequence alignment and the first phylogenetic analysis of the cation/Ca(2+) exchanger superfamily of 147 sequences. The results present a framework for structure-function relationships of cation/Ca(2+) exchangers, suggesting unique signature motifs of conserved residues that may underlie divergent functional properties. Construction of a phylogenetic tree with inclusion of cation/Ca(2+) exchangers with known functional properties defines five protein families and the evolutionary relationships between the members. Based on this analysis, the cation/Ca(2+) exchanger superfamily is classified into the YRBG, CAX, NCX, and NCKX families and a newly recognized family, designated CCX. These findings will provide guides for future studies concerning structures, functions, and evolutionary origins of the cation/Ca(2+) exchangers.  相似文献   

5.
We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.  相似文献   

6.
Sodium-calcium exchangers have long been considered inert with respect to monovalent cations such as lithium, choline, and N-methyl-d-glucamine. A key question that has remained unsolved is how despite this, Li(+) catalyzes calcium exchange in mammalian tissues. Here we report that a Na(+)/Ca(2+) exchanger, NCLX cloned from human cells (known as FLJ22233), is distinct from both known forms of the exchanger, NCX and NCKX in structure and kinetics. Surprisingly, NCLX catalyzes active Li(+)/Ca(2+) exchange, thereby explaining the exchange of these ions in mammalian tissues. The NCLX protein, detected as both 70- and 55-KDa polypeptides, is highly expressed in rat pancreas, skeletal muscle, and stomach. We demonstrate, moreover, that NCLX is a K(+)-independent exchanger that catalyzes Ca(2+) flux at a rate comparable with NCX1 but without promoting Na(+)/Ba(2+) exchange. The activity of NCLX is strongly inhibited by zinc, although it does not transport this cation. NCLX activity is only partially inhibited by the NCX inhibitor, KB-R7943. Our results provide a cogent explanation for a fundamental question. How can Li(+) promote Ca(2+) exchange whereas the known exchangers are inert to Li(+) ions? Identification of this novel member of the Na(+)/Ca(2+) superfamily, with distinct characteristics, including the ability to transport Li(+), may provide an explanation for this phenomenon.  相似文献   

7.
Wang T  Xu H  Oberwinkler J  Gu Y  Hardie RC  Montell C 《Neuron》2005,45(3):367-378
In sensory neurons, Ca(2+) entry is crucial for both activation and subsequent attenuation of signaling. Influx of Ca(2+) is counterbalanced by Ca(2+) extrusion, and Na(+)/Ca(2+) exchange is the primary mode for rapid Ca(2+) removal during and after sensory stimulation. However, the consequences on sensory signaling resulting from mutations in Na(+)/Ca(2+) exchangers have not been described. Here, we report that mutations in the Drosophila Na(+)/Ca(2+) exchanger calx have a profound effect on activity-dependent survival of photoreceptor cells. Loss of CalX activity resulted in a transient response to light, a dramatic decrease in signal amplification, and unusually rapid adaptation. Conversely, overexpression of CalX had reciprocal effects and greatly suppressed the retinal degeneration caused by constitutive activity of the TRP channel. These results illustrate the critical role of Ca(2+) for proper signaling and provide genetic evidence that Ca(2+) overload is responsible for a form of retinal degeneration resulting from defects in the TRP channel.  相似文献   

8.
The nuclear envelope (NE) enclosing the cell nucleus, although morphologically and chemically distinct from the plasma membrane, has certain features in common with the latter including the presence of GM1 as an important modulatory molecule. This ganglioside influences Ca(2+) flux across both membranes, but by quite different mechanisms. GM1 in the NE contributes to regulation of nuclear Ca(2+) through potentiation of a Na(+)/Ca(2+) exchanger in the inner nuclear membrane, whereas in the cell membrane, it regulates cytosolic Ca(2+) through modulation of a nonvoltage-gated Ca(2+) channel. Studies with neuroblastoma cells suggest GM1 concentration becomes elevated in the NE with onset of axonogenesis. However, the nuclear GM1/exchanger complex is not limited to neuronal cells but also occurs in NE of astrocytes, C6 cells, and certain non-neural cells. Immunoprecipitation and immunoblot experiments have shown high affinity association of the nuclear Na(+)/Ca(2+) exchanger with GM1, in contrast to Na(+)/Ca(2+) exchangers of the plasma membrane, which bind GM1 less avidly or not at all. This is believed to be due to different isoforms of the exchanger and a difference in topology of GM1 relative to the large inner loop of the exchanger in the 2 membranes. Cultured neurons from mice genetically engineered to lack GM1 suffered Ca(2+) dysregulation as seen in their high vulnerability to Ca(2+)-induced apoptosis. They were rescued by GM1 and more effectively by LIGA20, a membrane-permeant derivative of GM1. The mutant animals were highly susceptible to kainate-induced seizures, which are also a reflection of Ca(2+) dysregulation. The seizures were effectively attenuated by LIGA20 in parallel with the ability of this agent to enter brain cells, insert into the NE, and potentiate Na(+)/Ca(2+) exchange activity in the nucleus. The Na(+)/Ca(2+) exchanger of the NE, in association with nuclear GM1, is thus seen contributing to independent regulation of Ca(2+) by the nucleus in a manner that provides cytoprotection against Ca(2+)-induced apoptosis.  相似文献   

9.
Astrocytes can exocytotically release the gliotransmitter glutamate from vesicular compartments. Increased cytosolic Ca(2+) concentration is necessary and sufficient for this process. The predominant source of Ca(2+) for exocytosis in astrocytes resides within the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate and ryanodine receptors of the ER provide a conduit for the release of Ca(2+) to the cytosol. The ER store is (re)filled by the store-specific Ca(2+)-ATPase. Ultimately, the depleted ER is replenished by Ca(2+) which enters from the extracellular space to the cytosol via store-operated Ca(2+) entry; the TRPC1 protein has been implicated in this part of the astrocytic exocytotic process. Voltage-gated Ca(2+) channels and plasma membrane Na(+)/Ca(2+) exchangers are additional means for cytosolic Ca(2+) entry. Cytosolic Ca(2+) levels can be modulated by mitochondria, which can take up cytosolic Ca(2+) via the Ca(2+) uniporter and release Ca(2+) into cytosol via the mitochondrial Na(+)/Ca(2+) exchanger, as well as by the formation of the mitochondrial permeability transition pore. The interplay between various Ca(2+) sources generates cytosolic Ca(2+) dynamics that can drive Ca(2+)-dependent exocytotic release of glutamate from astrocytes. An understanding of this process in vivo will reveal some of the astrocytic functions in health and disease of the brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

10.
11.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

12.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

13.
Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca(2+) concentrations ([Ca(2+)](i)). To directly asses the effects of increasing [Ca(2+)](i) in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca(2+) from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na(+) from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca(2+)-dependent nonselective cation current. The strict dependence on internal Ca(2+) and external Na(+) indicated that the inward current was due to an electrogenic Na(+)/Ca(2+) exchanger. Block of the caffeine-induced current by an inhibitor of Na(+)/Ca(2+) exchange (50-100 microM 2',4'-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na(+)/Ca(2+) exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2', 4'-dichlorobenzamil. We found that electrogenic Na(+)/Ca(2+) exchange was responsible for approximately 26% of the total current associated with glutamate-induced odor responses. Although Na(+)/Ca(2+) exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction.  相似文献   

14.
15.
We have previously demonstrated that rat cerebellar Type-1 astrocytes express a very active genistein sensitive Na(+)/Ca(2+) exchanger, which accounts for most of the total plasma membrane Ca(2+) fluxes and for the clearance of loads induced by physiological agonists. In this work, we have explored the mechanism by which the reverse Na(+)/Ca(2+) exchange is involved in agonist-induced Ca(2+) signaling in rat cerebellar astrocytes. Microspectrofluorometric measurements of Cai(2+) with Fluo-3 demonstrate that the Cai(2+) signals associated long (> 20 s) periods of reverse operation of the Na(+)/Ca(2+) exchange are amplified by a mechanism compatible with calcium-calcium release, while those associated with short (< 20 s) pulses are not amplified. This was confirmed by pharmacological experiments using ryanodine receptors agonist (4-chloro-m-cresol) and the endoplasmic reticulum ATPase inhibitor (thapsigargin). Confocal microscopy demonstrates a high co-localization of immunofluorescent labeled Na(+)/Ca(2+) exchanger and RyRs. Low (< 50 micromol/L) or high (> 500 micromol/L) concentrations of L-glutamate (L-Glu) or L-aspartate causes a rise in which is completely blocked by the Na(+)/Ca(2+) exchange inhibitors KB-R7943 and SEA0400. The most important novel finding presented in this work is that L-Glu activates the reverse mode of the Na(+)/Ca(2+) exchange by inducing Na(+) entry through the electrogenic Na(+)-Glu-co-transporter and not through the ionophoric L-Glu receptors, as confirmed by pharmacological experiments with specific blockers of the ionophoric L-Glu receptors and the electrogenic Glu transporter.  相似文献   

16.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

17.
Calcium homeostasis is crucial for the proper function of cardiac cells. Since the Na(+)/Ca(2+) exchanger is an important modulator of calcium homeostasis especially in the heart, the objective of this study was to investigate the effect of immobilization stress on the high capacity Na(+)/Ca(2+) exchanger in rat heart ventricles and atria. Repeated immobilization stress increased both the mRNA and the protein level and the activity of the Na(+)/Ca(2+) exchanger in the left, but not the right ventricle of rat heart. Since corticosterone is rapidly increased during the stress stimulus, it might be assumed that mRNA of the Na(+)/Ca(2+) exchanger is increased through a glucocorticoid responsive element. However, we have found that cortisol did not change the Na(+)/Ca(2+) exchanger at the mRNA or protein levels. These results clearly show that this effect of stress is not mediated via cortisol.  相似文献   

18.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

19.
20.
Calcineurin homologous protein (CHP) is an EF-hand Ca(2+)-binding protein capable of interacting with various cellular proteins including Na(+)/H(+) exchangers, kinesin-related proteins, and apoptosis-inducing protein kinase DRAK2. We investigated the role of CHP on the DRAK2 protein kinase in vitro. CHP significantly reduced (approximately 85% inhibition) the kinase activity of DRAK2 for both autophosphorylation and phosphorylation of exogenous substrate (myosin light chain). The inhibitory effect of CHP was dependent on the presence of Ca(2+), whereas the interaction between CHP and DRAK2 was not Ca(2+)-dependent. These observations suggest that CHP negatively regulates the apoptosis-inducing protein kinase DRAK2 in a manner that depends on intracellular Ca(2+)-concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号