首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effort is presented to create expression vectors which would allow expression of an inserted gene fragment in three reading frames in a single vector from a single promoter but with three separate ribosome binding sites (RBS). Each expression frame would generate an in-frame fusion with an affinity tag to allow efficient recovery of the produced fusion proteins. In the first generation vector, three identical polyhistidyl tags (His(6)) were used as affinity tags for the three expression frames. In the second generation vector, three different tags, an albumin binding domain derived from streptococcal protein G, an IgG binding Staphylococcus aureus protein A-derived domain (Z) and a His(6) tag, were employed to allow frame-specific affinity recovery. To evaluate the systems, model genes have been inserted in three different frames in both vectors. The first vector was demonstrated to produce fusion proteins in all three frames, whereas for the second, with a much wider spacing between the RBSs and affinity tags, expression could only be demonstrated from the first two translational start sites. For both systems, the first translation start was found to be significantly favored over the others. Nevertheless, we believe that the presented results represent the first successful attempt to create single-vector three-frame expression systems, a concept that could become valuable in future combined cloning-expression vectors.  相似文献   

2.
General expression vectors, designed for intracellular expression or secretion of recombinant proteins in the non-pathogenic Staphylococcus carnosus, were constructed. Both vector systems encode two different affinity tags, an upstream albumin binding protein and a downstream hexahistidyl peptide, and are furnished with cleavage sites for two site-specific proteases for optional affinity tag removal. To evaluate the novel vectors, the gene encoding the outer membrane protein A (OmpA) of Klebsiella pneumoniae was introduced into the vectors. Efficient production was demonstrated in both systems, although, as expected for OmpA fusions, somewhat better intracellularly, and the fusion proteins could be recovered as full-length products by affinity chromatography.  相似文献   

3.
Gateway-compatible vectors for plant functional genomics and proteomics   总被引:12,自引:0,他引:12  
Gateway cloning technology facilitates high-throughput cloning of target sequences by making use of the bacteriophage lambda site-specific recombination system. Target sequences are first captured in a commercially available "entry vector" and are then recombined into various "destination vectors" for expression in different experimental organisms. Gateway technology has been embraced by a number of plant laboratories that have engineered destination vectors for promoter specificity analyses, protein localization studies, protein/protein interaction studies, constitutive or inducible protein expression studies, gene knockdown by RNA interference, or affinity purification experiments. We review the various types of Gateway destination vectors that are currently available to the plant research community and provide links and references to enable additional information to be obtained concerning these vectors. We also describe a set of "pEarleyGate" plasmid vectors for Agrobacterium-mediated plant transformation that translationally fuse FLAG, HA, cMyc, AcV5 or tandem affinity purification epitope tags onto target proteins, with or without an adjacent fluorescent protein. The oligopeptide epitope tags allow the affinity purification, immunolocalization or immunoprecipitation of recombinant proteins expressed in vivo. We demonstrate the utility of pEarleyGate destination vectors for the expression of epitope-tagged proteins that can be affinity captured or localized by immunofluorescence microscopy. Antibodies detecting the FLAG, HA, cMyc and AcV5 tags show relatively little cross-reaction with endogenous proteins in a variety of monocotyledonous and dicotyledonous plants, suggesting broad utility for the tags and vectors.  相似文献   

4.
We describe a cloning and expression system which is based on the Escherichia coli T7 expression system and Gateway recombination technology. We have produced numerous destination vectors with selected fusion tags and an additional set of entry vectors containing the gene of interest and optional labeling tags. This powerful system enables us to transfer a cDNA to several expression vectors in parallel and combine them with various labeling tags. To remove the attached amino terminal tags along with the unwanted attB1 site, we inserted PreScission protease cleavage sites. In contrast to the commercially available destination vectors, our plasmids provide kanamycin resistance, which can be an advantage when expressing toxic proteins in E. coli. Some small-scale protein expression experiments are shown to demonstrate the usefulness of these novel Gateway vectors. In summary, this system has some benefits over the widely used and commercially available Gateway standard system, and it enables many different combinations for expression constructs from a single gene of interest.  相似文献   

5.
A modular series of versatile expression vectors is described for improved affinity purification of recombinant fusion proteins. Special features of these vectors include (i) serial affinity tags (hexahistidine-GST) to yield extremely pure protein even with very low expression rates, (ii) highly efficient proteolytic cleavage of affinity tags under a variety of conditions by hexahistidine-tagged tobacco etch virus (TEV) protease, (iii) PCR cloning design that results in a product of proteolytic cleavage with only one (a single glycine) or two (gly-ala) amino acids at the N-terminus of the protein, and (iv) expression in either Escherichia coli or Saccharomyces cerevisiae. In addition, singly hexahistidine-tagged proteins can be produced for purification under denaturing conditions and some vectors allow addition of five amino acid kinase recognition sites for easy radiolabeling of proteins. To illustrate the use of these vectors, all regulatory components of the yeast GAL regulon, rather than abundant highly soluble proteins, were produced and purified under native or denaturing conditions, and their biological activity was confirmed.  相似文献   

6.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

7.
We report a set of baculovirus transfer vectors for parallel expression of proteins in fusion with a panel of affinity tags including GST, protein A, thioredoxin, CBP, and FLAG. This suite includes vectors to generate recombinant baculovirus by homologous recombination in insect cells or using the Bac-to-Bac technology. An application of the vector suite approach to the vitamin D receptor (VDR), a protein mainly expressed as inclusion bodies in Escherichia coli, is presented. We found that expression in fusion with GST and protein A provided an efficient compromise of excellent purification with acceptable yields and costs.  相似文献   

8.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

9.
The increasing use of the fission yeast Schizosaccharomyces pombe as a model organism for elucidating the mechanisms of critical biological processes such as cell-cycle control, DNA replication, and stress-mediated signal transduction has fostered the development and utilization of expression systems for gene function analysis. Using the promoter of the ctr4(+) copper transporter gene from S. pombe, we created a series of vectors, named pctr4(+)-X, which regulate the expression of heterologous genes as a function of copper availability. In this system, the addition of copper ions at levels that are non-toxic to yeast cells represses gene expression, while copper deprivation strongly induces gene expression. Conveniently, changes of growth medium or carbon sources are not required to shut down or induce gene expression. The Cu-starvation-mediated inducible expression system is rapid, producing heterologous proteins within 3 h, with sustained expression of proteins that persists for several hours. The pctr4(+)-X expression vectors harbor unique restriction sites constructed in-frame to DNA sequences encoding for epitope tags, which facilitate the detection or purification of the heterologous proteins using commercially available antibodies and affinity columns. Furthermore, the pctr4(+)-X copper-regulatable protein expression vectors have been constructed with three different selectable markers, offering more versatility for studying gene function in fission yeast.  相似文献   

10.
Polyhistidine tags enable the facile purification of proteins by immobilized metal affinity chromatography (IMAC). Both the type and position of purification tags can affect significantly properties of a protein such as its expression level, behavior in solution, and its ability to form suitable samples (esp. suitable crystals for X-ray crystallography). We investigated systematically the effects of polyhistidine tag length and position on many properties related to expression and purification of recombinant integral membrane proteins. Specifically, modified Escherichia coli pET expression vectors were built that placed 6- or 10-histidine tags at the N- or C-termini of the subcloned gene. The E. coli water channel AqpZ was subcloned into this suite of vectors and its expression, purification, solution properties, and yield were characterized. These studies show that: (1) all vectors yield similar expression levels, (2) tag length has a greater effect than tag position upon yield, (3) neither tag length nor position affects significantly detergent solubilization of the protein, (4) the length of the tag affects the oligomerization state of the purified protein, and (5) the tag length and position change chromatographic behavior of the detergent-solubilized protein. In addition, substitution of the lysine codon AAA at the second position, previously shown to have some effect upon soluble protein expression levels, did not have a large effect on AqpZ production. We are currently producing approximately 12 mg of purified AqpZ per liter of shake-flask culture, and preliminary crystals that diffract to approximately 5A resolution have been obtained.  相似文献   

11.
The BioBrick™ paradigm for the assembly of enzymatic pathways is being adopted and becoming a standard practice in microbial engineering. We present a strategy to adapt the BioBrick™ paradigm to allow the quick assembly of multi-gene pathways into a number of vectors as well as for the quick mobilization of any cloned gene into vectors with different features for gene expression and protein purification. A primary BioBrick™ (BB-eGFP) was developed where the promoter/RBS, multiple cloning sites, optional protein purification affinity tags and reporter gene were all separated into discrete regions by additional restriction enzymes. This primary BB-eGFP then served as the template for additional BioBrick™ vectors with different origins of replication, antibiotic resistances, inducible promoters (arabinose, IPTG or anhydrotetracycline), N- or C-terminal Histidine tags with thrombin cleavage, a LacZα reporter gene and an additional origin of mobility (oriT). All developed BioBricks™ and BioBrick™ compatible vectors were shown to be functional by measuring reporter gene expression. Lastly, a C30 carotenoid pathway was assembled as a model enzymatic pathway to demonstrate in vivo functionality and compatibility of this engineered vector system.  相似文献   

12.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

13.
High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.  相似文献   

14.
15.
We have developed a series of plasmid vectors for the soluble expression and subsequent purification of recombinant proteins that have historically proven to be extremely difficult to purify from Escherichia coli. Instead of dramatically overproducing the target protein, it is expressed at a low basal level that facilitates the correct folding of the recombinant protein and increases its solubility. Highly active recombinant proteins that are traditionally difficult to purify are readily purified using standard affinity tags and conventional chromatography. To demonstrate the utility of these vectors, we have expressed and purified full-length human DNA polymerases η, ι, and ν from E. coli and show that the purified DNA polymerases are catalytically active in vitro.  相似文献   

16.
【目的】构建串联亲和纯化原核表达载体,用于研究细菌中(生理状态或接近生理条件下的)蛋白-蛋白相互作用。【方法】设计并合成两条串联亲和标签序列,分别可以在靶蛋白N端和C端融合Protein G和链亲和素结合肽(Streptavidin binding peptide,SBP)标签;以pUC18载体为骨架,去除原有的阻遏蛋白基因,构建组成型表达载体pNTAP和pCTAP。【结果】成功构建N端和C端标签表达载体pNTAP和pCTAP,它们在大肠杆菌(Escherichia coli)BL21(DE3)、肠出血性大肠杆菌O157:H7和痢疾杆菌福氏5型M90T菌株中都可以实现表达。【结论】本实验构建的两个串联亲和纯化表达载体可以在部分革兰氏阴性细菌中表达,为研究细菌内蛋白-蛋白相互作用及致病菌毒力蛋白的作用机制奠定了基础。  相似文献   

17.
A truncated but functional form of the botulinum neurotoxin A light chain (Tyr 9-Leu 415) has been cloned into the three bacterial expression vectors, pET 28, pET 30, and PGEX-2T, and produced as fusion proteins. This 406-amino-acid light chain was expressed with 1 six-histidine tag (LC-pET28), 2 six histidine tags and a S-tag (LC-pET30), or a six-histidine tag and a glutathione S-transferase tag (LC-pGEX-2T). The three fusion proteins have been overexpressed in Escherichia coli, purified in a soluble form, and tested for protease activity. All three recombinant proteins were found to have similar enzymatic activity, comparable to the light chain purified from the whole toxin. The LC-pET30 protein was the most soluble and stable of the three fusion proteins, and it could be purified using a one-step affinity chromatography protocol. The purified protein was determined to be 98% pure as assessed by SDS-polyacrylamide gel. This protein has been crystallized and initial X-ray data show that the crystals diffract to 1.8 A.  相似文献   

18.
In a pilot study on SAGE on Reed-Sternberg cells we have sequenced 1055 tags representing 701 genes. Screening of the GenBank database resulted in the identification of a corresponding gene or EST for 490 of them. For 211 of the tags no homology could be detected. A major problem of the serial analysis of gene expression (SAGE) approach is how to further analyse the unknown tags. We have developed an RT-PCR-based method, rapid analysis of unknown SAGE tags (RAST-PCR), to analyse the expression of the corresponding genes. This approach can be used as a screening method to investigate whether or not the gene is differentially expressed between several cell types of interest.  相似文献   

19.
To quickly find an optimal expression system for recombinant protein production, a set of vectors with the same restriction sites were constructed for parallel cloning of a target gene and recombinant protein production in prokaryotic and eukaryotic expression systems, simultaneously. These vectors include nucleotide sequences encoding protein tags and protease recognition sites for tag removal, followed by the cloning sites 5′‐EcoRI/3′‐XhoI identical in these vectors for ligating with the sticky‐end PCR product of a target gene. Our vectors allow parallel gene cloning and protein production in multiple expression systems with minimal cloning effort. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号