首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens-mediated transformation (AMT) was successfully applied to mycelia of the 3 economically important mushrooms Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa. We used the hygromycin B resistance gene (hph) under the control of the Cryptococcus neoformans actin promoter. Eighty-six resistant strains of H. marmoreus, 4 of F. velutipes, and 2 of G. frondosa were obtained. All transformants were highly resistant to hygromycin B, suggesting that the C. neoformans actin promoter has a potential universal promoter activity in basidiomycetes. Southern analysis revealed random but single integration of the hph gene.  相似文献   

2.
The potential of ligninolytic enzymes, including lignin peroxidase (LiP) as the main enzyme from the spent mushroom substrate of Pleurotus sajor-caju was evaluated for the decolourisation of five dyes from azo and anthraquinone dye groups. Among the azo dyes, reactive black 5 and reactive orange 16 were 84.0 and 80.9% decolourised respectively, after 4 h of incubation with 45 U of LiP as compared to 32.1% decolourisation of disperse blue 79. Among the anthraquinone dyes, disperse red 60 was decolourised to 47.2% after 4 h of incubation with 45 U of LiP as compared to 5.9% decolourisation of disperse blue 56. Increasing the LiP concentration and incubation time had a positive effect on the decolourisation of anthraquinone dyes as compared to azo dyes. A 67.9% decolourisation of synthetic textile waste-water was achieved after 4 h of incubation with 25 U of LiP. Increasing the incubation time significantly increased (P < 0.05) the decolourisation of synthetic textile waste-water. Further, there was a 52.4% reduction in the toxicity of synthetic textile waste-water treated with 55 U of LiP for 4 h. However, only 35.7% reduction in toxicity was achieved when the synthetic textile waste-water was treated with 55 U of LiP for 24 h. In this study, it was shown that the spent mushroom substrate of P. sajor-caju could be a cheap source of ligninolytic enzymes for the decolourisation of dyes in textile industry wastewaters.  相似文献   

3.
Three different kinds of biomass, namely Populus deltoides, Eupatorium adenophorum and sericulture waste were used individually for the cultivation of Pleurotus sajor-caju, alone and mixed with paddy straw. P. sajor-caju, when used alone, exhibited a very good colonizing ability on these substrates, except in sericulture waste. The biological efficiency of P. deltoides and E. adenophorum when used as pure substrate was 75 and 77%, respectively, but it increased to 102% when P. sajor-caju was cultivated in a mixture with paddy straw in a ratio of 1:2. Experiments examining the growth on sericulture waste in both pure and mixed substrate are encouraging. From the analysis of substrate before and after the cultivation of P. sajor-caju it was noted that subsstrates were enriched in their protein content as a result of growth of this mushroom. The percentage of degradation of cellulose, hemicellulose and lignin showed that P. sajor-caju is capable of utilizing all three major components. The fruit bodies of P. sajor-caju were analyzed for crude protein content, crude fat and carbohydrate content. The energy values in the fruit bodies of P. sajor-caju and different organic wastes were found to vary from 282 to 309 kcal/100 g and from 319 to 467 kcal/100 g, respectively. It was found, however, that the energy recovery from organic wastes by fruit bodies was very low, i.e. 4.19-8.73 kcal/100g of dry substrate.  相似文献   

4.
Vinasse is a highly colored effluent with a high pollutant potential when disposed in the environment. Assays for decolorization of vinasse were performed, selecting the fungus Pleurotus sajor-caju CCB 020. The discoloration was cocominant with the increase of the activities of laccase, manganese-peroxidase and peroxidases. P. sajor-caju demonstrated a rise in biomass production (1.06 g 100 ml−1), and the enzyme activities such as laccase (varying from 400 to 450 IU l−1) reached between the 9th and 10th day of growth and for MnP at the 12th day of cultivation (varying from 60 to 100 IU l−1). It was concluded that the system P. sajor-caju/vinasse can be utilized as a bioprocess for color removal and degradation of complex vinasse compounds. It was observed an improvement in the characteristics and detoxification allowing its utilization as reused water, laccase and manganese-peroxidase enzymes production and for fungal biomass production with a high nutritional value.  相似文献   

5.
White strains of Hypsizygus marmoreus are more difficult to cultivate than are brown strains; therefore, new white strain breeding strategies are required. Accordingly, we constructed the genetic map of H. marmoreus with 1996 SNP markers on 11 linkage groups (LGs) spanning 1380.49 cM. Prior to analysis, 82 backcrossed strains (HM8 lines) were generated by mating between KMCC03106-31 and the progenies of the F1 hybrid (Hami-18 × KMCC03106-93). Using HM8, the first 23 quantitative trait loci (QTLs) of yield-related traits were detected with high limit of detection (LOD) scores (1.98–9.86). The length, thickness, and hardness of the stipe were colocated on LG 1. Especially, length of stipe and thickness of stipe were highly correlated given that the correlation coefficients were negative (−0.39, p value ≤ .01). And a typical biomodal distribution was observed for lightness of the pileus and the lightness of the pileus trait belonged to the LG 8, as did traits of earliness and mycelial growth in potato dextrose agar (PDA) medium. Therefore, results for color traits can be suggested that color is controlled by a multi-gene of one locus. The yield trait was highly negatively correlated with the traits for thickness of the stipe (−0.45, p value ≤ .01). Based on additive effects, the white strain was confirmed as recessive; however, traits of mycelial growth, lightness, and quality were inherited by backcrossed HM8 lines. This new genetic map, finely mapped QTLs, and the strong selection markers could be used in molecular breeding of H. marmoreus.  相似文献   

6.
This paper describes the production of ligninolytic enzymes by the white-rot fungus Pleurotus sajor caju under solid-state fermentation conditions using a cost-effective medium consisting of agro-industrial wastes. From the different agro-industrial wastes tested (i.e. orange, banana, mango and cantaloupe peels), banana peels led to the highest manganese-dependent peroxidase (MnP) activity (6.3 U/mL on the 10 day). MnP from banana peel cultures was purified and applied to the discoloration of the azo dye Congo Red (CR). The optimum temperature, pH and enzyme concentration for maximum discoloration (i.e. 95% in 1 h) were found to be 35°C, 4.0, and 1.4 U/mL, respectively. In addition, the phytotoxicity (with respect to Sorghum vulgare and Phaseolus radiatus seeds) of CR was considerably reduced after the treatment of plant material with MnP produced by P. sajor caju. The products obtained after discoloration of CR were characterized using GC/MS as 8-amino naphthol 3-sulfonic acid, 3-hydroperoxy 8-nitrosonaphthol, p-p'-dihydroxybiphenyl. Therefore, this approach holds promise for the production and application of MnP from P. sajor caju on a larger scale.  相似文献   

7.
Aflatoxin B1 (AFB1) is a highly toxic fungal metabolite having carcinogenic, mutagenic and teratogenic effects on human and animal health. Accidental feeding of aflatoxin-contaminated rice straw may be detrimental for ruminant livestock and can lead to transmission of this toxin or its metabolites into the milk of dairy cattle. White-rot basidiomycetous fungus Pleurotus ostreatus produces ligninolytic enzymes like laccase and manganese peroxidase (MnP). These extracellular enzymes have been reported to degrade many environmentally hazardous compounds. The present study examines the ability of P. ostreatus strains to degrade AFB1 in rice straw in the presence of metal salts and surfactants. Laccase and MnP activities were determined spectrophotometrically. The efficiency of AFB1 degradation was evaluated by high performance liquid chromatography. Highest degradation was recorded for both P. ostreatus MTCC 142 (89.14 %) and P. ostreatus GHBBF10 (91.76 %) at 0.5 µg mL?1 initial concentration of AFB1. Enhanced degradation was noted for P. ostreatus MTCC 142 in the presence of Cu2+ and Triton X-100, at toxin concentration of 5 µg mL?1. P. ostreatus GHBBF10 showed highest degradation in the presence of Zn2+ and Tween 80. Liquid chromatography-mass spectrometric analysis revealed the formation of hydrated, decarbonylated and O-dealkylated products. The present findings suggested that supplementation of AFB1-contaminated rice straw by certain metal salts and surfactants can improve the enzymatic degradation of this mycotoxin by P. ostreatus strains.  相似文献   

8.
Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192–196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1–T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.  相似文献   

9.
Seedlessness, an important economic trait for fresh fruit, is among the prior goal for all citrus breeding programs. Symmetric somatic hybridization provides a new strategy for citrus seedless breeding by creating cybrids transferring mitochondrial DNA (mtDNA) controlled cytoplasmic male sterility (CMS) from the callus parent Satsuma mandarin (C. unshiu Marc.) to seedy cultivars. In this study, protoplast fusion was adopted to transfer CMS from C. unshiu Marc. cv. Guoqing No. 1 (G1) to three seedy sweet oranges (C. sinensis L. Osb.), i.e. ‘Early gold’, ‘Taoye’ and ‘Hongjiang’. Flow cytometry analysis showed that 12 of 13 regenerated plants from G1 + ‘Early gold’, 9 of 12 from G1 + ‘Taoye’ and both two plants from G1 + ‘Hongjiang’ were diploids, while the remaining regenerated plants were tetraploids. Molecular analysis using 23 simple sequence repeat (SSR) markers previously proven to map to the citrus genome showed that the nuclear DNA from all recovered diploid and tetraploid plants derived from their corresponding leaf parent, while cleaved amplified polymorphic sequence analysis showed that the mtDNA of all regenerated plants derived from the callus parent, indicating that the regenerated 2X and 4X plants from all these three combinations are authentic cybrids. Furthermore, the Chloroplast SSR analysis revealed that somatic cybrid plants from the three combinations possessed either of their parental chloroplast type in most cases. These results demonstrated that mtDNA of G1 Satsuma mandarin was successfully introduced into the three seedy sweet orange cultivars for potential seedlessness via symmetric fusion.  相似文献   

10.
Bisphenol A (BPA) was treated with hyper lignin-degrading fungus Phanerochaete sordida YK-624 under ligninolytic condition. After preculturing P. sordida YK-624 for 4 days, BPA (final concentration, 1 and 0.1 mM) was added to cultures. Both 1- and 0.1-mM BPA were effectively decreased within a 24-h treatment and two metabolites were detected. Two metabolites (5,5′-bis-[1-(4-hydroxy-phenyl)1-methyl-ethyl]-biphenyl-2,2′-diol and 4-(2-(4-hydroxy-phenyl) propan-2-yl)-2-(4-(2-(4-hydroxyphenyl) propan-2-yl) phenoxy)phenol) were identified by ESI–MS and NMR analysis. These results indicated that BPA was oxidized to BPA phenoxy radicals by ligninolytic enzymes and then dimerized at extracellular region.  相似文献   

11.
The cyanide degradation abilities of three white rot fungi, Trametes versicolor ATCC 200801, Phanerochaete chrysosporium ME 496 and Pleurotus sajor-caju, were examined. T. versicolor was the most effective with 0.35 g dry cell/100 ml degrading 2 mm KCN (130 mg/l) over 42 h, at 30°C, pH 10.5 with stirring at 150 rpm.  相似文献   

12.
Thirty-four endophytic marine Actinomycetes isolates were recovered from the Egyptian marine sponge Latrunculia corticata, out of them 5 isolates (14.7 %) showed red single colonies on yeast-CzAPEK plates. Isolates under the isolation code NRC50 and NRC51 were observed with the strongest red biomass. After application of protoplast fusion between NRC50 and NRC51 isolates, 26 fusants were selected and produced widely different amounts of prodigiosin-like pigments (PLPs) on different fermentation media. Among them fusant NRCF69 produced 79 and 160.4 % PLPs more than parental strains NRC50 and NRC51, respectively. According to the analysis of 16S rDNA sequence (amplified, sequenced, and submitted to GenBank under Accession no. JN232405 and JN232406, respectively), together with their morphological and biochemical characteristics, parental strains NRC50 (P1) and NRC51 (P2) were identified as Streptomyces sp. and designated as Streptomyces sp. NRC50 and Streptomyces sp. NRC51. This study describes a low cost, effective production media by using peanut seed broth, sunflower oil broth or dairy processing wastewater broth alone, or supplemented with 0.5 % mannitol that supports the production of PLPs by the Streptomyces fusant NRCF69 under study (42.03, 40.11, 36.7 and 47 g L?1, respectively). PLPs compounds exhibited significant cytotoxic activities against three human cancer cell lines: colon cancer cell line (HCT-116), liver cancer cell line (HEPG-2) and breast cancer cell line (MCF-7) and antimycotic activity against clinical dermatophyte isolates of Trichophyton, Microsporum and Epidermophyton.  相似文献   

13.
Grifola frondosa (Maitake mushroom) is an important cultivated mushroom due to its medicinal and nutrient values. In this study, we isolated and characterized a novel partitivirus (named Grifola frondosa partitivirus 1, GfPV1) infecting a standard G. frondosa strain Gf-N2. This virus has a two-segmented dsRNA genome (dsRNA1 and dsRNA2) with nucleotide lengths of 2.3 and 2.2 kbp, respectively. The coding strand of dsRNA1 and dsRNA2 segments carries single open reading frame encoding RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. BLAST searches and phylogenetic analyses showed that GfPV1 is most closely related to a betapartitivirus, Lentinula edodes partitivirus 1 (RdRp <70% and CP <60% amino acid sequence identities), but the sequence divergence suggests that GfPV1 is classifiable as a new member of the genus Betapartitivirus, family Partitiviridae. The presence of GfPV1 does not affect colony morphology and fruiting body development of G. frondosa. This is the first report investigating the effects of a mycovirus infection on the colony morphology and fruiting body development of G. frondosa. Interestingly, GfPV1 accumulations markedly decreased along with the fruiting body maturation stages, suggesting the inhibition of virus multiplication during sexual phase of the G. frondosa life cycle.  相似文献   

14.
工厂化生产海鲜菇菌包污染霉菌的鉴定及防治   总被引:1,自引:0,他引:1  
对工厂化生产中海鲜菇菌包污染霉菌进行分离,根据霉菌的形态特征、培养性状及ITS序列分析,鉴定其为哈茨木霉、拟康氏木霉、脉孢霉、长枝木霉、黑曲霉、产红青霉和产黄青霉;在此基础上探讨了常用抑菌剂对霉菌的防治效果及对海鲜菇菌丝生长的影响。结果表明,质量浓度100 mg/L克霉灵对哈茨木霉、黑曲霉、产红青霉、产黄青霉、拟康氏木霉有强抑制作用,质量浓度100 mg/L多菌灵对长枝木霉、产红青霉、产黄青霉、拟康氏木霉有强抑制作用,二者对海鲜菇菌丝生长的抑制都比较弱。可为海鲜菇工厂化生产中污染霉菌的综合防治提供参考。  相似文献   

15.
Major advances in our understanding of the biochemical and enzymological mechanisms of lignin biodegradation have been made in the past three years. Research has principally involved two ligninolytic microorganisms, the white rot fungus Phanerochaete chrysosporium and the actinomycete Streptomyces viridosporus. Research has been centred on attempts to identify the microbial catalysts that mediate lignin decay in these two microbes. Emphasis has been on studies concerned with isolating specific lignin catabolic enzymes and/or reduced forms of oxygen involved in attacking the lignin polymer. The possibility that lignin degradation might be non-enzymatic and mediated by extracellular reduced oxygen species such as hydrogen peroxide (H2O2), superoxide (O2∪c-|_.), hydroxyl radical (·OH) or singlet oxygen (1O2) has been investigated with both microorganisms. Using methods which have not always been unequivocal, the question of involvement of reduced oxygen species in lignin degradation by P. chrysosporium has been examined exhaustively. Evidence for the involvement of H2O2 is conclusive. However, there is little evidence to support the involvement of other extracellular reduced oxygen species, including ·OH, directly in the process of lignin degradation. Scavenger studies have been inconclusive because of questions of their specificity. If activated oxygen species are involved, the activated oxygen is probably held within the active site of an enzyme molecule. With S. viridosporus, scavenger studies also strongly indicate that extracellular reduced oxygen species are not involved in lignin degradation since scavengers generally do not significantly affect the ligninolytic system. The involvement of specific enzymes in lignin degradation by both P. chrysosporium and S. viridosporus has now been confirmed. With P. chrysosporium, ligninolytic enzymes recently discovered include extracellular non-specific peroxidases and oxygenases. They show numerous activities including dehydrogenative, peroxidatic, oxygenative and Cα?Cβ cleavages of lignin side chains. At least one P. chrysosporium enzyme, a unique H2O2-requiring oxygenase, has been purified to homogeneity. Evidence has been presented to show that S. viridosporus also produces a ligninolytic enzyme complex involved in demethylation of lignin's aromatic rings and in the oxidation of lignin side chains and cleavage of β-tether linkages within the polymer. The combined activites of these enzymes generate water-soluble polymeric modified lignin fragments, which are then slowly degraded further by S. viridosporus. The β-ether cleaving enzyme complex is probably membrane associated, but it is not extracellular. These first isolations of ligninolytic enzymes have changed the course of basic research on lignin biodegradation. New research priorities are already emerging and include enzyme purifications, kinetic studies, enzyme reaction mechanism studies and screenings for more enzymes. In addition, genetic studies are being carried out with both P. chrysosporium and S. viridosporus. Genetic manipulations include not only classical mutagenesis techniques, but also recombinant DNA techniques such as protoplast fusion. This latter technique has already been used to generate overproducers of the ligninolytic enzyme complex in S. viridosporus and it has been successfully used to recombine mutant strains of P. chrysosporium.  相似文献   

16.
Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF’s ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l?1. These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l?1. Fungal growth and enzyme expression were inhibited at a salinity of 35 g l?1. These inhibitory effects directly decreased the degradation rate (>24 %). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38–89 % over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions.  相似文献   

17.
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economical organic recycling processes. Compared with other cultivated mushrooms, very little is known about the nature of the lignocellulolytic enzymes produced by the edible and medicinal fungus Grifola frondosa, the parameters affecting their production, and enzyme activity profiles during different stages of the developmental cycle. In this work we investigated the enzymes that enable G. frondosa, to colonize and deconstruct two formulations based on industrial lignocellulosic by-products. G. frondosa degraded both substrates (oak-sawdust plus corn bran, and oak/corn bran supplemented with coffee spent-ground) decreasing 67 and 50% of their lignin content, along with 44 and 37% of the polysaccharides (hemicellulose and cellulose) respectively. 35.3% biological efficiency was obtained when using oak sawdust plus corn bran as substrate. Coffee spent-ground addition inhibited mushroom production, decreased growth, xylanase and cellulase activities. However, taking into account that G. frondosa successfully colonized this residue; this substrate formula might be considered for its growth and medicinal polysaccharide production. Although G. frondosa tested positive for Azure B plate degradation, a qualitative assay for lignin-peroxidase, attempts to detect this activity during solid state fermentation were unsuccessful. Enzyme activities peaked during colonization but declined drastically during fruiting body formation. Highest activities achieved were: endoglucanase 12.3, exoglucanase 16.2, β-glucosidase 2.3, endoxylanase 20.3, amylase 0.26, laccase 14.8 and Mn-peroxidase 7.4 U/g dry substrate.  相似文献   

18.
Biodegradation of agribiomass especially wheat straw to biohydrogen and biomethane is an encouraging approach to the current waste management problem. To do so, the biomass must first be pretreated to break down lignin thereby increasing accessibility of the substrate to fermentative organisms. In the current study, out of 20 isolates from the granular sludge of full-scale anaerobic digester, four ligninolytic Bacillus sp. strains were selected based on their lignin and Azure B degradation. Further, among the four isolates, Brevibacillus agri AN-3 exhibited the highest of 88.4 and 78.1% decrease in COD of lignin and Azure B respectively. These strains were also found to secrete optimum yields of lignin peroxidase (LiP) at pH 3, laccase (Lac) at pH 5, and xylanase and cellulase enzymes at pH 7. The strains demonstrated maximum activity of Lip and Lac at 50 °C and xylanase and cellulase at 60 °C after 72-h growth. Among the four strains, Brevibacillus agri AN-3 showed hydrogen (H2) yield of 1.34 and 2.9 mol-H2/mol from xylose and cellulose respectively. In two-phase wheat straw batch fermentation, Brevibacillus agri AN-3 produced 88.3 and 283.7 mL/gVS cumulative H2 and methane (CH4) respectively. Biotreatment with ligninolytic Bacillus sp. strains perceived that 261.4% more methane yield could be obtained from the wheat straw than using the untreated wheat straw in batch fermentation. This is the first study establishing not only the hydrogen potential of ligninolytic Bacillus sp. strains but also indicates a vital role of these species in developing standard inoculum and a biocatalyst for processing agribiomass.
Graphical Abstract ?
  相似文献   

19.
Two Gram-stain negative, rod-shaped and motile extreme halophiles, designated CBA1107T and CBA1108, were isolated from non-purified solar salt. Based on the phylogenetic analysis, strains CBA1107T and CBA1108 were shown to belong to the genus Halolamina, with similarities for the 16S rRNA gene sequences between strains CBA1107T and Halolamina pelagica TBN21T , Halolamina salina WSY15-H3T and Halolamina salifodinae WSY15-H1T of 98.3, 97.6 and 97.3 %, respectively; the similarities for the rpoB′ gene sequences between the same strains were 96.0, 95.3 and 94.6 %, respectively. The colonies of both strains were observed to be red pigmented on growth medium. Strain CBA1107T was observed to grow at 20–50 °C, in the presence of 15–30 % NaCl, at pH 6.0–9.0, and with 0.005–0.5 M Mg2+. The cells of both strains lysed in distilled water. The DNA–DNA hybridization experiments showed that strain CBA1107T shared 97 % relatedness with CBA1108 and <50 % relatedness with H. pelagica JCM 16809T, H. salina JCM 18549T and H. salifodinae JCM 18548T. The genomic DNA G+C content of strain CBA1107T was determined to be 65.1 mol%. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and glycolipids including sulfated mannosyl glucosyl diether and mannosyl glucosyl diether. Based on the polyphasic taxonomic analyses, the strains are considered to represent a new taxon for which the name Halolamina rubra sp. nov. is proposed, with the type strain CBA1107T (=CECT 8421T =JCM 19436T).  相似文献   

20.
Existence of variability in morphological traits and growth rate of mycelium of homokaryotic single basidiospores can be exploited for the development of inter-strainal hybrids. We isolated 182 single basidiospores from mushroom bodies of P. sajor-caju, P. florida, P. eous and one wild relative of Pleurotus called Hypsizygus ulmaris. The single spores were isolated using a new technique that is less prone to contamination and more efficient than the common techniques used by earlier workers. All the isolates showed a varied range of cultural morphology. Mating types of all the isolates within the species were identified on the basis of hyphal fusion via anastomosis with the tester strains. Four compatible pairs of isolates with well prominent tuft in the contact zone were selected for dikaryon isolation. Dikaryons were used for spawn preparation and mushroom cultivation. The dikaryotic isolates with their replicates were evaluated for spawn run period, yield and biological efficiency. 42 isolates (10 di- and 32 mono-karyotic isolates) were analyzed with RAPD genetic markers. Phenotypic characters and mating types of all the 42 isolates analyzed genetically were correlated with their genetic polymorphism data. The isolates showed very large diversity both at the phenotypic and the genotypic level. Available phenotypic and genotypic data can further help in the selection of monosporous isolates for developing inter-strainal hybrids which can lead to better prospects for genetic improvement in different species of Pleurotus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号