首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K m and V max values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.  相似文献   

2.
A glutathione-S-transferase involved in atrazine conjugation was purified 43-fold from corn with a total yield of 36%. The purified enzyme has a MW of 45 000 as determined by gel filtration. The estimated activation energy of the enzyme is 6.4 kcal/mol and the optimum pH for activity between 8 and 8.5. Substrate specificity studies with s-triazines indicated that atrazine was the best substrate followed by simazine and propazine. The Cl group at the 2-position was essential for enzyme activity, and replacement by a SCH3 group resulted in a total loss of activity. The absence of an alkyl group resulted in a reduction of conjugation and 2-chloro-4,6-bis-amino-s-triazine was the poorest substrate. With insecticidal substrates (organophosphates), conjugating activity was observed only with diazinon and little or no activity was observed with ethyl parathion, malathion and etrimfos. No activity was found using methyl iodide as a substrate. The purified enzyme has properties similar to those of an aryl-S-transferase. Quinones were inhibitors of this enzyme.  相似文献   

3.
An alkaline-thermostable mannanase from Streptomyces sp. CS428 was produced, purified, and biochemically characterized. The extracellular mannanase (Mn428) was purified to homogeneity with 12.4 fold, specific activity of 2406.7 U/mg, and final recovery of 37.6 %. The purified β-mannanase was found to be a monomeric protein with a molecular mass of approximately 35 kDa as analyzed by SDS-PAGE and zymography. The first N-terminal amino acid sequences of mannanase enzyme were HIRNGNHQLPTG. The optimal temperature and pH for enzyme were 60 °C and 12.5, respectively. The mannanase activities were significantly affected by the presence of metal ions, modulators, and detergents. Km and Vmax values of Mn428 were 1.01 ± 3.4 mg/mL and 5029 ± 85 µmol/min mg, respectively when different concentrations (0.6–10 mg/mL) of locust bean gum galactomannan were used as substrate. The substrate specificity of enzyme showed its highest specificity towards galactomannan which was further hydrolyzed to produce mannose, mannobiose, mannotriose, and a series of mannooligosaccharides. Mannooligosaccharides can be further converted to ethanol production, thus the purified β-mannanase isolated from Streptomyces sp. CS428 was found to be attractive for biotechnological applications.  相似文献   

4.
Applications of lipases are mainly based on their catalytic efficiency and substrate specificity. In this study, circular permutation (CP), an unconventional protein engineering technique, was employed to acquire active mutants of Yarrowia lipolytica lipase Lip8p. A total of 21 mutant lipases exhibited significant shifts in substrate specificity. Cp128, the most active enzyme mutant, showed higher catalytic activity (14.5-fold) and higher affinity (4.6-fold) (decreased K m) to p-nitrophenyl-myristate (pNP-C14) than wild type (WT). Based on the three-dimensional (3D) structure model of the Lip8p, we found that most of the functional mutation occurred in the surface-exposed loop region in close proximity to the lid domain (S112–F122), which implies the steric effect of the lid on lipase activity and substrate specificity. The temperature properties of Cp128 were also investigated. In contrast to the optimal temperature of 45 °C for the WT enzyme, Cp128 exhibited the maximal activity at 37 °C. But it is noteworthy that there is no change in thermostability.  相似文献   

5.
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg?1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min?1 mg?1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L?1 h?1 g?1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.  相似文献   

6.
The latex from Vasconcellea quercifolia (“oak leaved papaya”), a member of the Caricaceae family, contains at least seven cysteine endopeptidases with high proteolytic activity, which helps to protect these plants against injury. In this study, we isolated and characterized the most basic of these cysteine endopeptidases, named VQ-VII. This new purified enzyme was homogeneous by bidimensional electrophoresis and MALDI-TOF mass spectrometry, and exhibited a molecular mass of 23,984 Da and an isoelectric point >11. The enzymatic activity of VQ-VII was completely inhibited by E-64 and iodoacetic acid, confirming that it belongs to the catalytic group of cysteine endopeptidases. By investigating the cleavage of the oxidized insulin B-chain to establish the hydrolytic specificity of VQ-VII, we found 13 cleavage sites on the substrate, revealing that it is a broad-specificity peptidase. The pH profiles toward p-Glu-Phe-Leu-p-nitroanilide (PFLNA) and casein showed that the optimum pH is about 6.8 for both substrates, and that in casein, it is active over a wide pH range (activity higher than 80 % between pH 6 and 9.5). Kinetic enzymatic assays were performed with the thiol peptidase substrate PFLNA (K m = 0.454 ± 0.046 mM, k cat = 1.57 ± 0.07 s?1, k cat/K m = 3.46 × 103 ± 14 s?1 M?1). The N-terminal sequence (21 amino acids) of VQ-VII showed an identity >70 % with 11 plant cysteine peptidases and the presence of highly conserved residues and motifs shared with the “papain-like” family of peptidases. VQ-VII proved to be a new latex enzyme of broad specificity, which can degrade extensively proteins of different nature in a wide pH range.  相似文献   

7.
A novel β-glucosidase from Penicillium aculeatum was purified as a single 110.5-kDa band on SDS–PAGE with a specific activity of 75.4 U?mg?1 by salt precipitation and Hi-Trap Q HP and Resource Q ion exchange chromatographies. The purified enzyme was identified as a member of the glycoside hydrolase 3 family based on its amino acid sequence. The hydrolysis activity for p-nitrophenyl-β-d-glucopyranoside was optimal at pH 4.5 and 70 °C with a half-life of 55 h. The enzyme hydrolyzed exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Because of the novel specificity, this enzyme had the transformation pathways for ginsenosides: Rb1?→?Rd?→?F2?→?compound K, Rb2?→?compound O?→?compound Y, Rc?→?compound Mc1?→?compound Mc, Rg3?→?Rh2?→?aglycone protopanaxadiol (APPD), Rg1?→?F1, and Rf?→?Rh1?→?aglycone protopanaxatriol (APPT). Under the optimum conditions, the enzyme converted 0.5 mM Rb2, Rc, Rd, Rg3, Rg1, and Rf to 0.49 mM compound Y, 0.49 mM compound Mc, 0.47 mM compound K, 0.23 mM APPD, 0.49 mM?F1, and 0.44 mM APPT after 6 h, respectively.  相似文献   

8.
Xylanase produced from the isolated bacterial strain Bacillus sp. SV-34S showed a 8.74-fold increase in enzyme activity under optimized submerged fermentation conditions. Cultivation using wheat bran as the carbon source and beef extract and (NH4)H2PO4 as the nitrogen source resulted in productivity of 3,454.01 IU/mL xylanase. Xylanase was purified by 12.94-fold, with a recovery of 13.4 % and a specific activity of 3417.2 IU/mg protein, employing ammonium sulphate fractionation followed by cation-exchange chromatography using CM-Sephadex C-50 column chromatography, with a product of 27 kDa. The purified xylanase showed an optimum temperature and pH of 50 °C and 6.5, respectively although it was active even at pH 11.0. The thermostability study revealed that Bacillus sp. SV-34S was thermotolerant, being stable up to 50 °C; the residual activity at 55 and 60 °C was 96 and 93 %, respectively. The enzyme was stable between pH 6.0 and 8.0, although it retained >100 % activity at pH 8.0 and 9.0, respectively, following pre-incubation for 24 h. Xylanase activity was inhibited by various metal ions added to the assay mixture, with maximum inhibition observed in the presence of HgCl2. The Km and Vmax values of the purified xylanase using birch wood xylan as substrate were 3.7 mg/mL and 133.33 IU/mL, respectively. The isolated bacterial strain produced high levels of extremophilic cellulase-free xylanase. The fact that it can be used in crude form and that it can be produced cheaply with renewable carbon sources make the process economically feasible. The characteristics of the purified enzyme suggest its potential application in industries such as the paper and pulp industry.  相似文献   

9.
Cholesterol oxidase production (COD) by a new isolate characterized as Streptomyces sp. was studied in different production media and fermentation conditions. Individual supplementation of 1 % maltose, lactose, sucrose, peptone, soybean meal and yeast extract enhanced COD production by 80–110 % in comparison to the basal production medium (2.4 U/ml). Supplementation of 0.05 % cholesterol (inducer) enhanced COD production by 150 %. COD was purified 14.3-fold and its molecular weight was found to be 62 kDa. Vmax (21.93 μM/min mg) and substrate affinity Km (101.3 μM) suggested high affinity of the COD for cholesterol. In presence of Ba2+ and Hg2+ the enzyme activity was inhibited while Cu2+ enhanced the activity nearly threefold. Relative activity of the enzyme was found maximum in triton X-100 whereas sodium dodecyl sulfate inactivated the enzyme. The enzyme activity was also inhibited by the thiol-reducing reagents like Dithiothreitol and β-mercaptoethanol. The COD showed moderate stability towards all organic solvents except acetone, benzene and chloroform. The activity increased in presence of isopropanol and ethanol. The enzyme was most active at pH 7 and 37 °C temperature. This organism is not reported to produce COD.  相似文献   

10.
An acid phosphatase from Trichoderma harzianum was purified in a single step using a phenyl-Sepharose chromatography column. A typical procedure showed 22-fold purification with 56% yield. The purified enzyme showed as a single band on SDS-PAGE with an apparent molecular weight of 57.8 kDa. The pH optimum was 4.8 and maximum activity was obtained at 55°C. The enzyme retained 60% of its activity after incubation at 55°C for 60 min. The K m and V max values for p-nitrophenyl phosphate (p-NPP) as a substrate were 165 nM and 237 nM min?1, respectively. The enzyme was partially inhibited by inorganic phosphate and strongly inhibited by tungstate. Broad substrate specificity was observed with significant activities for p-NPP, ATP, ADP, AMP, fructose 6-phosphate, glucose 1-phosphate and phenyl phosphate.  相似文献   

11.
A highly abundant β-glucosidase from petals of Silybum marianum has been purified and characterized for its physico-kinetic properties. The 135 kDa enzyme was a homodimer with subunit molecular mass of 67.6 kDa. The characteristic catalytic properties of the enzyme included acidic pH optimum (5.5), meso-thermostability, and β-linked substrate specificity with preference for gluco-conjugate but a marked (>50 %) activity with D-fuco-conjugates and considerable (~16 %) activity towards D-galacto-conjugates. The enzyme showed high affinity for p-nitrophenyl glucoside (pNPG) with Km and Vmax values of 0.25 mM and 5.35 μkat.mg?1 enzyme protein. Thus, the enzyme had a very high (292,000 M?1.s?1) catalytic efficiency (Kcat/Km). Thermal catalytic optimum of enzyme was 40 °C with activation energy value 8.26 kCal.Mol?1. The enzyme showed significant insensitivity to D-gluconic acid lactone inhibition (57 % at 5 mM) with an apparent Ki 3.8 mM. The transglucosylating ability of enzyme was noticed for glucosylation of geraniol and withaferin-A with pNPG as glucosyl donor but cellobiose did not serve as the glycosyl donor. Partial proteomics of the enzyme revealed two peptide fragment sequences, VTPSNEVH and KRSEESNF. These motifs showed significant matching/sequence conservation with some other glycohydrolases. The novelties of purified enzyme hold potential to expand a library of catalytically characteristic members of the hydrolase family from plants for use in biotransformation applications.  相似文献   

12.
When purified subcellular fractions were prepared from rat liver and assayed for dolichol kinase activity using pig liver dolichol as a substrate, the microsomes were found to contain the highest specific activity and greater than 75% of the total actvity. With regard to substrate specificity, the microsomal enzyme showed a marked preference for saturation of the α-isoprene: dolichol-16 and -19 were 2.5-fold more active than the corresponding polyprenols. For a given class of prenol, the 16 and 19 isoprenologs exhibited similar activity, whereas the 11 isoprenolog appeared less active. The enzyme was twice as active against the naturally occurring polyprenol-16 (α-cis-isoprene) compared to synthetic α-trans-polyprenol-16. Taken together, the data indicate that the α-isoprene specificity follows the order: saturated>cis>trans. In addition, all-trans-2,3-dihydrosolanesol was not a substrate, suggesting that at least one cis isoprene residue is required.  相似文献   

13.
2-haloacid dehalogenases are enzymes that are capable of degrading 2-haloacid compounds. These enzymes are produced by bacteria, but so far they have only been purified and characterized from terrestrial bacteria. The present study describes the purification and characterization of 2-haloacid dehalogenase from the marine bacterium Pseudomonas stutzeri DEH130. P. Stutzeri DEH130 contained two kinds of 2-haloacid dehalogenase (designated as Dehalogenase I and Dehalogenase II) as detected in the crude cell extract after ammonium sulfate fractionation. Both enzymes appeared to exhibit stereo-specificity with respect to substrate. Dehalogenase I was a 109.9-kDa enzyme that preferentially utilized D-2-chloropropropionate and had optimum activity at pH 7.5. Dehalogenase II, which preferentially utilized L-2-chloropropionate, was further purified by ion-exchange chromatography and gel filtration. Purified Dehalogenase II appeared to be a dimeric enzyme with a subunit of 26.0-kDa. It had maximum activity at pH 10.0 and a temperature of 40 °C. Its activity was not inhibited by DTT and EDTA, but strongly inhibited by Cu2+, Zn2+, and Co2+. The K m and V max for L-2-chloropropionate were 0.3 mM and 23.8 μmol/min/mg, respectively. Its substrate specificity was limited to short chain mono-substituted 2-halocarboxylic acids, with no activity detected toward fluoropropionate and monoiodoacetate. This is the first report on the purification and characterization of 2-haloacid dehalogenase from a marine bacterium.  相似文献   

14.
A calmodulin-dependent protein kinase from canine myocardial cytosol was purified 1150-fold to apparent homogeneity with a 1.5% yield. The purified enzyme had a Mr of 550,000 with a sedimentation coefficient of 16.6 S, and showed a single protein band with a Mr of 55,000 (55K protein), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 1.6 μmol/mg protein/min, and Ka values of 67 nM and 1.1 μM for calmodulin and Ca2+, respectively, using chicken gizzard myosin light chain as substrate. Calmodulin bound to the 55K protein. The purified enzyme had a broad substrate specificity. Endogenous proteins including glycogen synthase, phospholamban, and troponin I from the canine heart were phosphorylated by the enzyme. These results suggest that the purified enzyme works as a multifunctional protein kinase in the Ca2+, calmodulin-dependent cellular functions of the canine myocardium, and that the enzyme resembles enzymes detected in the brain, liver, and skeletal muscle.  相似文献   

15.
Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.  相似文献   

16.
Rice bean (Vigna umbellata Thunb.) phytase activity increased during germination and reached maximum at 72 h. The phytate content in seeds decreased with increase in germination time. Phytase was purified 32 fold from 72-h germinated cotyledons with final specific activity 2.22 U/mg. Native PAGE revealed a single band. On SDS PAGE, it revealed two bands with molecular mass 66 and 44 kDa. The native molecular mass was 110 kDa on size exclusion chromatography. The A280/260 ratio was 1.88. When the enzyme was excited at 295 nm, the emission maximum was observed at 330 nm. The FTIR results suggest that Lys, Tyr, Phe, Trp, Ser, Gln and Asn residues on the enzyme’s surface. The enzyme was stored at 4 °C, showed 12 % residual activity on 35th day which was improved to 53.6 and 65.7 %, respectively in the presence of additives ascorbic acid and acetaminophen. The optimum pH and temperature of enzyme were 4.0 and 40 °C, respectively. The energy of activation was 32.2 kJ/mol. The values of K m and V max were 0.197 mM and 2.35 μmol/min/mg protein, respectively with sodium phytate as substrate. Phytase showed broad substrate specificity. The k cat/K m ratio was the highest for sodium phytate.  相似文献   

17.
Alcaligenes sp. MTCC 10674 was isolated as acetone cyanohydrin hydrolyzing bacterium from soil of orchid gardens of Himachal Pradesh. Acetone cyanohydrin hydrolyzing activity of this organism comprised nitrile hydratase and amidase activities. It exhibited higher substrate specificity towards aliphatic hydroxynitrile (acetone cyanohydrin) in comparison to arylaliphatic hydroxynitrile. Isobutyronitrile (40 mM) acted as a carbon source as well as inducer for growth of Alcaligenes sp. MTCC 10674 and expression of acetone cyanohydrin hydrolyzing activity. Optimization of culture condition using response surface methodology increased acetone cyanohydrin hydrolyzing activity by 1.3-fold, while inducer mediation approach increased the activity by 1.2-fold. The half life of this enzyme was 25 h at 15 °C. V max and K m value for acetone cyanohydrin hydrolyzing enzyme was 0.71 μmol mg?1 min?1 and 14.3 mM, when acetone cyanohydrin was used as substrate. Acetone cyanohydrin hydrolyzing enzyme encountered product inhibition and IC50 and K i value were calculated to be 28 and 10.2 mM, respectively, when product α-hydroxyisobutyric acid was added in the reaction. Under optimized reaction conditions at 40 ml fed batch scale, 3 mg dcw ml ? resting cells of Alcaligenes sp. MTCC 10674 fully converted 0.33 M acetone cyanohydrin into α-hydroxyisobutyric acid (1.02 g) in 6 h 40 min. The characterization of acetone cyanohydrins hydrolyzing activity revealed that it comprises bienzymatic nitrile hydrolyzing system, i.e. nitrile hydratase and amidase for the production of α-hydroxyisobutyric acid from acetone cyanohydrin and maximum 70 % yield is being reported for the first time.  相似文献   

18.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

19.
A putative endo-1,4-β-d-xylanohydrolase gene xyl11 from Aspergillus niger, encoding a 188-residue xylanase of glycosyl hydrolase family 11, was constitutively expressed in Pichia pastoris. The recombinant Xyl11 exhibited optimal activity at pH 5.0 and 50 °C, and displayed more than 68 % of the maximum activity over the temperature range 35–65 °C and 33 % over the pH range 2.2–7.0. It maintained more than 40 % of the original activity after incubation at 90 °C (pH 5.0) for 10 min and more than 75 % of the original activity after incubation at pH 2.2–11.0 (room temperature) for 2 h. The specific activity, K m and V max of purified Xyl11 were 22,253 U mg?1, 6.57 mg ml?1 and 51,546.4 μmol min?1 mg?1. It could degrade xylan to a series of xylooligosaccharides and no xylose was detected. The recombinant enzyme with high stability and catalytic efficiency could work over wide ranges of pH and temperature and thus has the potential for various industrial applications.  相似文献   

20.
An acid-tolerant α-galactosidase (CVGI) was isolated from the fruiting bodies of Coriolus versicolor with a 229-fold of purification and a specific activity of 398.6 units mg?1. It was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The purified enzyme gave a single band corresponding to a molecular mass of 40 kDa in SDS-PAGE and gel filtration. The α-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The optimum temperature and pH of the enzyme were determined as 60 °C and 3.0, respectively. The enzyme was very stable at a temperature range of 4–50 °C and at a pH range of 2–5. Among the metal ions tested, Cu2+, Cd2+ and Hg2+ ions have been shown to partially inhibit the activity of α-galactosidase, while the activity of CVGI was completely inactivated by Ag+ ions. N-bromosuccinamide inhibited enzyme activity by 100 %, indicating the importance of tryptophan residue(s) at or near the active site. CVGI had wide substrate specificity (p-nitrophenyl galactoside, melidiose, raffinose and stachyose). After treatment with CVGI, raffinose family oligosaccharide was hydrolyzed effectively to yield galactose and sucrose. The results showed that the general properties of the enzyme offer potential for use of this α-galactosidase in several production processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号