首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20. Rice plants grown hydroponically or in soil for 1 month were subjected to both severe and moderate salinity stress. Apoplastic barriers in roots were visualized using fluorescence microscopy and their chemical composition determined by gas chromatography and mass spectrometry. Na+ content was estimated by flame photometry. Suberization of apoplastic barriers in roots of Pokkali was the most extensive of the three cultivars, while Na+ accumulation in the shoots was the least. Saline stress induced the strengthening of these barriers in both sensitive and tolerant cultivars, with increase in mRNAs encoding suberin biosynthetic enzymes being detectable within 30 min of stress. Enhanced barriers were detected after several days of moderate stress. Overall, more extensive apoplastic barriers in roots correlated with reduced Na+ uptake and enhanced survival when challenged with high salinity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis.In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.  相似文献   

4.
Yellow vein mosaic disease of mesta, a compatible plant virus interaction, poses a serious threat to mesta cultivation in India. Plants respond to invasion by pathogens with multi-component defense responses particularly in incompatible interaction. With the aim of understanding, a biochemical approach was attempted to study the cellular redox status in early stages of yellow vein mosaic virus infection associated with different ages plants of Hibiscus cannabinus. Comparative analysis of GSH and GSSG content in infected and control plants of different ages indicated that infected plants are under oxidative or nitrosative stress condition. A significant change was observed in Glutathione Reductase, Catalase and Ascorbate Peroxidase level in early stage of infection. We also showed microscopic evidence of nitrosylated thiols in infected leaves, stems and roots of H. cannabinus. Furthermore, we identified few defense related proteins in infected plant using MALDI TOF mass spectrometric analysis.Key words: mesta yellow vein mosaic virus, cellular redox status, redox active enzymes, nitrosylated thiol, defense proteins  相似文献   

5.
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120 mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.  相似文献   

6.
Plant mitochondrial uncoupling proteins (pUCPs) play important roles in generation of metabolic thermogenesis, response to stress situation, and regulation of energy metabolism. Although the signaling pathways for the pUCPs-regulated plant energy metabolism and thermogenesis are well studied, the role of pUCPs in the regulation of plant stress tolerance has not been fully substantiated. Here we showed that mitochondrial uncoupling protein was required for effective antioxidant enzymes activities, chlorophyll fluorescence and redox poise in tomato under oxidative stress using virusinduced gene silencing approach. Silencing of LeUCP gene reduced maximal quantum yield of PSII (Fv/Fm) and photochemical quenching coefficient (qP), as well as mitigated activation of antioxidant enzymes and related genes expression. The content of reduced ascorbate and reduced glutathione, redox ratio of ascorbate and L-galactono-1,4-lactone dehydrogenase (GalLDH; EC 1.3.2.3) activity were all decreased in the leaves of LeUCP gene-silenced plant. However, malondialdehyde content was increased under methylviologen (MV) stress. ROS accumulation was increased significantly following MV and heat stress treatments. Meanwhile, LeUCP gene silencing aggravated accumulation of H2O2 and O 2 ·? in leaves. Taken together, these results strongly suggest that LeUCP gene plays critical role in maintaining the redox homeostasis and balance in antioxidant enzyme system under oxidative stress.  相似文献   

7.
The relationships of guard cell ABA content to eight stress-related physiological parameters were determined on intact Vicia faba L. plants that were grown hydroponically with split-root systems. Continuous stress was imposed by the addition of PEG to part of the root system. The water potentials of roots sampled after the addition of PEG were 0.25 MPa lower than the water potentials of other roots of the same plant, which were similar to the roots of untreated plants. The leaflet water potentials of plants sampled within 2 h of stress imposition were similar to those of control plants. However, leaf conductance was lower in plants sampled after only 20 min of stress imposition, and the root- and leaflet apoplastic ABA concentrations of these plants were higher than those of untreated plants. As the essence of this report, there was a linear relationship between guard cell ABA content and leaf conductance. Leaflet apoplastic ABA concentrations <150 nM were also linearly related to leaf conductance, but higher leaflet apoplastic ABA concentration did not cause equally large further declines in leaf conductance. It is suggested that evaporation from guard cell walls caused ABA to accumulate in the guard cell apoplast and this pool was saturated at high leaflet apoplastic ABA concentrations.  相似文献   

8.
Culture of bean plants (Phaseolus vulgaris L. cv., Złota Saxa) for 16 d on phosphate-deficient nutrient medium resulted in an over twofold increase of pyruvate concentration in the root tissues. In a variety of plant tissues, the marked decline in cellular concentrations of adenylates and inorganic phosphate (Pi) influences the activity of pyruvate producing enzymes, which are dependent on the availability of ADP. In bean roots after 16 d of phosphate starvation pyruvate producing enzymes: phosphoenolpyruvate phosphatase (EC 3.1.3.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) had higher activities compared to those of control plants. The observed decrease of alanine and ethanol concentration and also alcohol dehydrogenase (EC 1.1.1.1) activity in phosphate-deficient roots may be the effect of the restrictions in pyruvate utilizing pathways. The increased activity of mitochondrial NAD-malic enzyme (EC 1.1.1.40) as well as the lower consumption of pyruvate during respiration of phosphate-deficient roots indicate that pyruvate concentration in mitochondria may be elevated. It is proposed that pyruvate accumulation in phosphate-deficient roots and alternative oxidase participation in respiration are important aspects of plant metabolic adaptations to Pi limitation, and may play a role in reducing oxidative stress induced by phosphate deficiency.  相似文献   

9.
The plant cell apoplast is the compartment beyond the cell plasmalemma, including the cell wall and intercellular space. Many environmental elements can trigger reactive oxygen species (ROS) burst at the plasma membrane which then alters the redox state of the apoplast. Recently, h-type thioredoxin (Trx), OsTRXh1, was identified to be involved in apoplastic redox state regulation in rice. OsTRXh1 is conserved redox-active Trx and can be secreted into the extracellular regions. Through transgenic rice plant, we found that OsTRXh1 regulated ROS accumulation in apoplast and influenced plant development and stress responses. This provides new insights into apoplastic redox state regulation pathway and expands our understanding of h-type Trxs function.  相似文献   

10.
Extraction of apoplastic sap from plant roots by centrifugation   总被引:10,自引:0,他引:10  
A centrifugal method for extracting apoplastic sap from roots of lupin ( Lupinus angustifolius ) and pea ( Pisum sativum ) plants, and a method to analyse malic dehydrogenase in the sap using capillary electrophoresis, are described. Osmolality of apoplastic sap was relatively constant at relative centrifugal forces (RCFs) between 600 and 3000 g for lupin, and between 600 and 4000 g for pea. Electropherograms of a marker enzyme (malic dehydrogenase) and other components in apoplastic and symplastic saps revealed that contamination occurred at 7000 g . It is suggested that apoplastic sap expelled from plant roots at RCF between 600 and 3000 g is free from symplastic contamination, and is regarded as being of apoplastic origin. The proposed method was used to measure apoplastic pH changes in the plant roots in response to external pH, ammonium, nitrate and vanadate.  相似文献   

11.
Methyl jasmonate (MJ) is an important plant growth regulator, involves in various physiological processes of plants. In the present study, role of MJ in tolerance to oilseed rape (Brassica napus L.) roots under arsenic (As) stress was investigated. The treatments were comprised of three MJ doses (0, 0.1, and 1 µM) and two levels of As (0 and 200 µM). Arsenic stress resulted in oxidative damage as evidenced by decreased root growth and enhanced reactive oxygen species and lipid peroxidation. However, plants treated with MJ decreased the H2O2 and O2 ·? contents in roots and have higher antioxidant activities. Importantly, results showed that MJ enhanced the redox states of AsA and GSH, and the related enzymes involved in the AsA–GSH cycle. Moreover, MJ also induced the secondary metabolites related enzymes (PAL and PPO) activities, under As stress. PAL and PPO expression was further increased by MJ application in the roots of B. napus under As stress. MJ also reduced the total As content compared with As alone treated plants. These findings suggest the role of MJ in mitigation of the As-induced oxidative damage by regulating AsA and GSH redox states and by reducing As uptake in both cultivars.  相似文献   

12.
Salinity affects water availability in the soil and subsequently the plant uptake capacity. Upon exposure to salt stress, leaf growth in monocot plants has been shown to be reduced instantaneously, followed by a gradual acclimation. The growth reactions are caused by an initial water deficit and an accompanied osmotic effect, followed by an IAA-induced sequestration of protons into the apoplast that increases leaf growth again as explained by the acid growth theory. In this study, we investigated the dynamics of growth reactions and apoplastic pH in leaves of the dicot Vicia faba in the presence of NaCl during the initiation of salt stress. Concurrent changes in apoplastic pH were detected by ratiometric fluorescence microscopy using the fluorescent dye fluorescein tetramethylrhodamine dextran. To elucidate the possible relation between the dynamics of leaf growth and apoplastic pH, results of the ratio imaging technique were combined with an in vivo growth analysis imaging approach. Leaf growth rate of V. faba was highest in the dusk and the early night phase; at this time a concomitant decrease of the apoplastic pH was observed. Under salinity, the apoplastic pH in leaves of V. faba increased with a simultaneous decrease of leaf growth towards increasing developmental stages, but with complex aberrations in the 24-h-leaf-growth pattern compared to control leaves. In conclusion, these results show that salt stress leads to an increase in apoplastic pH and to a declined leaf growth activity with complex 24-h-interactions of growth and pH in V. faba.  相似文献   

13.
Recent structure-function analysis of heterologously expressed K+-selective inward-rectifying channels (KIRCs) from plants has revealed that external protons can have opposite effects on different members of the same gene family. An important question is how the diverse response of KIRCs to apoplastic pH is reflected at the tissue level. Activation of KIRCs by acid external pH is well documented for guard cells, but no other tissue has yet been studied. In this paper we present, for the first time to our knowledge, in planta characterization of the effects of apoplastic pH on KIRCs in roots. Patch-clamp experiments on protoplasts derived from barley (Hordeum vulgare) roots showed that a decrease in external pH shifted the half-activation potential to more positive voltages and increased the limit conductance. The resulting enhancement of the KIRC current, together with the characteristic voltage dependence, strongly relates the KIRC of barley root cells to AKT1-type as opposed to AKT3-type channels. Measurements of cell wall pH in barley roots with fluorescent dye revealed a bulk apoplastic pH close to the pK values of KIRC activation and significant acidification of the apoplast after the addition of fusicoccin. These results indicate that channel-mediated K+ uptake may be linked to development, growth, and stress responses of root cells via the activity of H+-translocating systems.  相似文献   

14.
15.
Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.  相似文献   

16.
17.
Apoplastic pH during low-oxygen stress in Barley   总被引:4,自引:0,他引:4  
Felle HH 《Annals of botany》2006,98(5):1085-1093
BACKGROUND AND AIMS: Anoxia leads to an energy crisis, tolerance of which varies from plant to plant. Although the apoplast represents an important storage and reaction space, and engages in the mediation of membrane transport, this extracellular compartment has not yet been granted a role during oxygen shortage. Here, an attempt is made to highlight the importance of the apoplast during oxygen stress and to test whether information about it is transferred systemically in Hordeum vulgare. METHODS: Non-invasive ion-selective microprobes were used which, after being inserted through open stomata, directly contact the apoplastic fluid and continuously measure the apoplastic pH and changes to it. KEY RESULTS: (a) Barley leaves respond to oxygen stress with apoplastic alkalinization and membrane depolarization. These responses are persistent under anoxia (N2; O2 < 3%) but transient under hypoxia. (b) Being applied to the root, the information 'anoxia' is signalled to the leaf as an increase in pH, whereas 'hypoxia' is not: flooding of the roots within the first 2 h has no effect on the leaf apoplastic pH, whereas anoxia (N2) or chemical anoxia (NaCN/salicylic hydroxamic acid) rapidly increase the leaf apoplastic pH. (c) Under anoxia, the proton motive force suffers a decrease by over 70 %, which impairs H(+) -driven transport. CONCLUSIONS: Although anoxia-induced apoplastic alkalinization is a general response to stress, its impact on the proton motive force (reduction) and thus on transport mediation of energy-rich compounds is evident. It is concluded that anoxia tolerance depends on how the plant is able to hold the proton motive force and H(+) turnover at a level that guarantees sufficient energy is harvested to overcome the crisis.  相似文献   

18.
Inoculation of tomato (Lycopersicon esculentum) leaves with Cladosporium fulvum (Cooke) (syn. Fulvia fulva [Cooke] Cif) results in a marked accumulation of several pathogenesis-related (PR) proteins in the apoplast. Two predominant PR proteins were purified from apoplastic fluid by ion exchange chromatography followed by chromatofocusing. One protein (molecular mass [Mr] 35 kilodaltons [kD], isoelectric point [pI] ~6.4) showed 1,3-β-glucanase activity, while the other one (Mr26 kD, pI ~6.1) showed chitinase activity. Identification of the products that were released upon incubation of the purified enzymes with laminarin or regenerated chitin revealed that both enzymes showed endo-activity. Using antisera raised against these purified enzymes from tomato and against chitinases and 1,3-β-glucanases isolated from other plant species, one additional 1,3-β-glucanase (Mr33 kD) and three additional chitinases (Mr 27, 30, and 32 kD) could be detected in apoplastic fluids or homogenates of tomato leaves inoculated with C. fulvum. Upon inoculation with C. fulvum, chitinase and 1,3-β-glucanase activity in apoplastic fluids increased more rapidly in incompatible interactions than in compatible ones. The role of these hydrolytic enzymes, potentially capable of degrading hyphal walls of C. fulvum, is discussed in relation to active plant defense.  相似文献   

19.
Water diffusion in maize roots (Zea mays L., cv. Donskaya 1) was investigated with a pulsed gradient NMR using mercuric chloride as an inhibitor of water channels in cell membranes. A novel operation program was applied that allowed selective evaluation of fractional amounts of water transported through various pathways—the apoplastic, symplasmic, and transmembrane routes. The blockage of water channels with HgCl2 reduced the rates of water diffusion by a factor of 1.5–2. This effect was reversible and was removed by the addition of -mercaptoethanol. The coefficient of water diffusion changed with time elapsed after the HgCl2 treatment. The effect of water stress on the rates of water diffusion was similar to that of HgCl2. Remarkably, the water-stressed roots of maize seedlings were insensitive to the inhibitor of water channels. The results are interpreted in terms of redistribution of water flows among various routes in plant tissues. Water stress and mercuric chloride treatments decelerate the transmembrane water transport and promote water flow along the apoplastic pathway. These responses might arise from the reversible regulation of water movement along various transport pathways.  相似文献   

20.
Using a short-term Cd treatment (5–30 min), we analysed the effect of Cd on apoplastic ascorbate redox status and their regeneration during the recovery period in barley root tips. Root growth inhibition induced by 15 μM Cd was detectable after 5 min of exposure and increased in a time-dependent manner up to 15 min of exposure. High 30 μM Cd concentration completely inhibited root growth during the first 6 h after short-term treatment. In parallel with Cd-induced root growth inhibition, a rapid decrease of apoplastic ascorbate dehydroascorbate ratio was observed immediately after short-term treatments. During the recovery from 15 μM Cd short-term treatment, apoplastic ascorbate was rapidly regenerated to the control level in the first root segment containing meristem and elongation zone. In contrast to 15 μM Cd treatment, in 30 μM Cd-treated roots apoplastic ascorbate level was sustained at a significantly lower level compared to control roots. We confirmed that a decrease of apoplastic ascorbate/dehydroascorbate ratio in the elongation zone was associated with root growth inhibition or arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号