首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Enterococci are widespread bacteria forming the third largest genus among lactic acid bacteria. Some possess probiotic properties or they can produce beneficial proteinaceous antimicrobial substances called enterocins. On the other hand, some enterococci produce biogenic amines (BAs), so this study is focused on the sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Altogether, 60 enterococci isolated from faeces of ostriches and pheasants were tested for production of BAs. This target of the identified enterococci involved 46 strains selected from 140 ostriches and 17 from 60 pheasants involving the species Enterococcus hirae, E. faecium, E. faecalis, and E. mundtii. Although BAs histamine, cadaverine, putrescine, and tryptamine were not detected in the enterococci tested, in general high BA production by the tested enterococci was noted. The species E. hirae formed the majority of the enterococcal strains from ostrichs faeces (34 strains). High production of tyramine (TYM) was measured with an average amount of 958.16 ± 28.18 mg/ml. Among the enterococci from pheasants, the highest was production of TYM compared to phenylethylamine, spermidine, and spermine. Enterococci featured high BA production; however, they were sensitive to seven enterocins with inhibition activity ranging from 100 up to 25,600 AU/ml.  相似文献   

2.
Screening and molecular identification of probiotic lactic acid bacteria (LAB) in effluents generated during the production of ogi, a fermented cereal (maize, millet, and sorghum) were done. LAB were isolated from effluents generated during the first and second fermentation stages in ogi production. Bacterial strains isolated were identified microscopically and phenotypically using standard methods. Probiotic potential properties of the isolated LAB were investigated in terms of their resistance to pH 1.5 and 0.3% bile salt concentration for 4 h. The potential LAB isolates ability to inhibit the growth of pathogenic organisms (Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium) was evaluated in vitro. The pH and LAB count in the effluents ranged from 3.31 to 4.49 and 3.67 to 4.72 log cfu/ml, respectively. A total of 88 LAB isolates were obtained from the effluents and only 10 LAB isolates remained viable at pH 1.5 and 0.3% bile salt. The zones of inhibition of the LAB isolates with probiotic potential ranged from 7.00 to 24.70 mm against test organsisms. Probiotic potential LAB isolates were molecularly identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Enterococcus faecium, Pediococcus acidilactici, Pediococcus pentosaceus, Enterococcus faecalis, and Lactobacillus brevis. Survival and proliferation of LAB isolates at low pH, 0.3% bile salt condition, and their inhibition against some test pathogens showed that these LAB isolates could be a potential probiotics for research and commercial purposes.  相似文献   

3.
Fibrolytic bacteria were isolated from the rumen of North American moose (Alces alces), which eat a high-fiber diet of woody browse. It was hypothesized that fibrolytic bacteria isolated from the moose rumen could be used as probiotics to improve fiber degradation and animal production. Thirty-one isolates (Bacillus, n = 26; Paenibacillus, n = 1; and Staphylococcus, n = 4) were cultured from moose rumen digesta samples collected in Vermont. Using Sanger sequencing of the 16S rRNA gene, culturing techniques, and optical densities, isolates were identified and screened for biochemical properties important to plant carbohydrate degradation. Five isolates were selected as candidates for use as a probiotic, which was administered daily to neonate lambs for 9 weeks. It was hypothesized that regular administration of a probiotic to improve fibrolysis to neonate animals through weaning would increase the developing rumen bacterial diversity, increase animal production, and allow for long-term colonization of the probiotic species. Neither weight gain nor wool quality was improved in lambs given a probiotic, however, dietary efficiency was increased as evidenced by the reduced feed intake (and rearing costs) without a loss to weight gain. Experimental lambs had a lower acetate to propionate ratio than control lambs, which was previously shown to indicate increased dietary efficiency. Fibrolytic bacteria made up the majority of sequences, mainly Prevotella, Butyrivibrio, and Ruminococcus. While protozoal densities increased over time and were stable, methanogen densities varied greatly in the first six months of life for lambs. This is likely due to the changing diet and bacterial populations in the developing rumen.  相似文献   

4.
Clustered regularly interspaced short palindromic repeats (CRISPR) are currently a topic of interest in microbiology due to their role as a prokaryotic immune system. Investigations of CRISPR distribution and characterization to date have focused on pathogenic bacteria, while less is known about CRISPR in commensal bacteria, where they may have a significant role in the ecology of the microbiota of humans and other animals, and act as a recorder of interactions between bacteria and viruses. A combination of PCR and sequencing was used to determine prevalence and distribution of CRISPR arrays in Enterococcus faecalis and Enterococcus hirae isolates from the feces of healthy pigs. Both type II CRISPR–Cas and Orphan CRISPR (without Cas genes) were detected in the 195 isolates examined. CRISPR–Cas was detected in 52 (46/88) and 42 % (45/107) E. faecalis and E. hirae isolates, respectively. The prevalence of Orphan CRISPR arrays was higher in E. faecalis isolates (95 %, 84/88) compared with E. hirae isolates (49 %, 53/107). Species-specific repeat sequences were identified in Orphan CRISPR arrays, and 42 unique spacer sequences were identified. Only two spacers matched previously characterized pig virome sequences, and many were apparently derived from chromosomal sequences of enterococci. Surprisingly, 17 (40 %) of the spacers were detected in both species. Shared spacer sequences are evidence of a lack of species specificity in the agents and mechanisms responsible for integration of spacers, and the abundance of spacer sequences corresponding to bacterial chromosomal sequences reflects interspecific interactions within the intestinal microbiota.  相似文献   

5.
In this study, we aimed to evaluate the in vitro probiotic characteristics of three bacteria, Lactobacillus plantarum VSG3, Pseudomonas aeruginosa VSG2, and Bacillus subtilis VSG1, isolated from the gut of Labeo rohita. The bacterial isolates tolerated low pH and high bile concentrations in the fish well. The bacterial adhesion capacity to fish intestinal mucosa revealed that the three potential probiotic isolates had a significantly higher adhesion capacity compared to the pathogenic strains tested. L. plantarum VSG3 exhibited the best adhesion capacity (19.1?%) to the intestinal mucosa. Among the isolates, L. plantarum VSG3 and P. aeruginosa VSG2 showed strong antibacterial activities against fish pathogens as measured in spent culture liquids. Moreover, all the isolates were susceptible to each tested antibiotic, which ensured their inability to exhibit antibiotic-resistance properties. Considering these promising results, selected strains should be further studied to determine their probiotic effects in vivo in fish.  相似文献   

6.
Multi-drug resistant uropathogens are responsible for urinary tract infections. The antibacterial activity of seven essential oils, oregano, thyme, clove, arborvitae, cassia, lemongrass, tea tree) was investigated by agar diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations against five multidrug resistant isolates namely Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloaceae, Morganella morganii, Proteus mirabilis. Oregano, thyme, cassia had antibacterial activity with inhibition zones ranging 25–39 mm; clove, arborvitae, tea tree and lemongrass 12–15 mm. The essential oils showed antibacterial activities with MICs ranged from 0.005% (w/v) to 0.5% (w/v). Thyme had the same MIC and MBC on all strains. The effects of the vapors of the essential oils were also tested by placing the oils on the underside of the Petri dish lid. Thyme, oregano and cassia essential oils strongly inhibited the growth of the clinical strains of bacteria tested in vapor phase. This study demonstrates the potential of investigated essential oils as natural alternatives for further application in hospital therapies in order to retard or inhibit the bacterial growth. For the first time antibacterial effects of essential oils (clove, arborvitae, tea tree, lemongrass, and cassia) were evaluated against Enterobacter cloaceae and Morganella morganii clinical isolates.  相似文献   

7.
Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full‐term, breast‐fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy‐protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL‐12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll‐like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized.  相似文献   

8.
Several studies have demonstrated a diversity of bacterial species in human milk, even in aseptically collected samples. The present study evaluated potential probiotic bacteria isolated from human milk and associated maternal variables. Milk samples were collected from 47 healthy women and cultured on selective and universal agar media under aerobic and anaerobic conditions. Bacterial isolates were counted and identified by Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight mass spectrometry and then tested for probiotic properties. Total bacteria in human milk ranged from 1.5 to 4.0 log10 CFU/mL. The higher bacterial counts were found in colostrum (mean = 3.9 log10 CFU/mL, 95% CI 3.14–4.22, p = 0.00001). The most abundant species was Staphylococcus epidermidis (n = 76). The potential probiotic candidates were Lactobacillus gasseri (n = 4), Bifidobacterium breve (n = 1), and Streptococcus salivarius (n = 4). Despite the small sample size, L. gasseri was isolated only in breast milk from mothers classified into a normal weight range and after a vaginally delivered partum. No potential probiotics showed antagonism against pathogens, but all of them agglutinated different pathogens. Nine bacterial isolates belonging to the species L. gasseri, B. breve, and S. salivarius were selected as potential probiotics. The present study confirms the presence in breast milk of a bacterial microbiota that could be the source of potential probiotic candidates to be used in the formula of simulated maternal milk.  相似文献   

9.
The present study aims to investigate the probiotic properties of novel strains of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China and to explore their antibacterial activity against enteropathogenic bacteria. Of the 321 isolates, 86 exhibited survival in low pH, resistance to pancreatin, and tolerance to bile salts; of these, 12 inhibited the growth of more than seven enteropathogenic bacteria and exhibited antibiofilm activities against Staphylococcus aureus CMCC26003 and/or Escherichia coli CVCC230. Based on 16S ribosomal RNA sequence analysis, the 12 isolates were assigned to Lactobacillus plantarum (7), Lactobacillus helveticus (3), Pediococcus acidilactici (1), and Enterococcus faecium (1) species. In addition, 5 of the 12 strains were susceptible to most of the tested antibiotics. Furthermore, four strains with sensitivity to antibiotics showed significantly high levels of hydrophobicity similar to or better than the reference strain Lactobacillus rhamnosus GG. Moreover, three strains were confirmed safe through non-hemolytic activities and bacterial translocation. Overall, the selected Lact. plantarum 27053 and 27172 and Lact. helveticus 27058 strains can be considered potential probiotic strains and candidates for further application in functional food and prevention or treatment of gastrointestinal diseases.  相似文献   

10.
This study investigated the influence of aeration and minimal medium conditions on antioxidant and antibacterial activities of 21 probiotic Lactobacillus strains isolated from dairy products. The probiotic potential of the isolates was evaluated by pH and bile tolerance. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to confirm the phenotypic identification of isolates. Antioxidant producer isolates were screened by resistance to reactive oxygen species (ROS). The antioxidant and antibacterial activities of extracellular materials after 48 h fermentation with antioxidative strains were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and broth microdilution assays, respectively. The results indicate that the antioxidant capacity of supernatants was increased by using of both minimal medium and agitation. The antibacterial activity was increased in minimal medium, but there has nearly no change in the antibacterial properties by using both agitation and minimal medium. The maximum antibacterial activity was observed during mid-exponential phase until the beginning of the early-stationary phase, but the maximum antioxidant activity was detected at the stationary growth phase. There is a significant relationship between antioxidant and antibacterial activities of the cell-free probiotic extracts, and their production rates are closely related to the fermentation type. The bioactive materials from probiotics could be extracted in a large amount at an appropriate time under a suitable condition.  相似文献   

11.

Background

Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran.

Methods and Results

A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse.

Conclusion

Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index.  相似文献   

12.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

13.
Thirty-four strains of lactic acid bacteria (seven Bifidobacterium, 11 Lactobacillus, six Lactococcus, and 10 Streptococcus thermophilus) were assayed in vitro for antioxidant activity against ascorbic and linolenic acid oxidation (TAAAA and TAALA), trolox-equivalent antioxidant capacity (TEAC), intracellular glutathione (TGSH), and superoxide dismutase (SOD). Wide dispersion of each of TAAAA, TAALA, TEAC, TGSH, and SOD occurred within bacterial groups, indicating that antioxidative properties are strain specific. The strains Bifidobacterium animalis subsp. lactis DSMZ 23032, Lactobacillus acidophilus DSMZ 23033, and Lactobacillus brevis DSMZ 23034 exhibited among the highest TAAAA, TAALA, TEAC, and TGSH values within the lactobacilli and bifidobacteria. These strains were used to prepare a potentially antioxidative probiotic formulation, which was administered to rats at the dose of 107, 108, and 109 cfu/day for 18 days. The probiotic strains colonized the colon of the rats during the trial and promoted intestinal saccharolytic metabolism. The analysis of plasma antioxidant activity, reactive oxygen molecules level, and glutathione concentration, revealed that, when administered at doses of at least 108 cfu/day, the antioxidant mixture effectively reduced doxorubicin-induced oxidative stress. Probiotic strains which are capable to limit excessive amounts of reactive radicals in vivo may contribute to prevent and control several diseases associated with oxidative stress.  相似文献   

14.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

15.
16.
The restricted number of antibiotics to treat infections caused by common multidrug resistant bacterial pathogens in the clinical setting demands a continuous search for new molecules with antibacterial properties. Bacterial iron deprivation represents a promising alternative, being iron chelators an attractive class for drug design in which particular compounds seem to have antibacterial effect.In this work, we report the synthesis and characterization of a new fluorescent 3-hydroxy-4-pyridinone (3,4-HPO) iron chelator functionalized with a carboxyrosamine fluorophore (MRB20). The antibacterial activity of MRB20 was assessed against representative strains from clinically relevant Gram-positive and Gram-negative bacterial species and further compared with the inhibitory effect of a set of structurally related iron chelators including Deferiprone (1,2-dimethyl-3-hydroxy-4-pyridinone). Compounds exhibiting a promising minimal inhibitory concentration (MIC < 10 mg/L) were further tested against a wider range of bacterial genera and species (Staphylococcus spp. Enterococcus spp. Listeria monocytogenes, Bacillus spp.), including multidrug resistant bacteria.With the exception of the novel compound (MRB20), all chelators inhibited the strains assayed at very high concentrations [minimum inhibitory concentrations (MIC) ranging from 70 mg/L to >180 mg/L]. MRB20 revealed a good antibacterial activity (6.7–13.2 mg/L) against Gram-positive strains from different genera and species, including clinically relevant species (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium, Enterococcus faecalis), which might be eventually compatible with a therapeutic application or as adjuvant.  相似文献   

17.
Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml?1. C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.  相似文献   

18.
We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (?5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.  相似文献   

19.
Sequence analysis of different fragments that hybridized with a 4.5-kb EcoRI fragment originally cloned from Enterococcus hirae ATCC 9790 showed 66% homology to IS-like sequences found in staphylococci and lactococci. We tested several enterococcal ATCC strains and found that only E. hirae ATCC 9790 and Enterococcus faecium ATCC 19434 hybridized with the IS-like sequence. Moreover, we wanted to investigate the dissemination of this new IS among E. faecium strains. We analyzed 131 clinical E. faecium isolated in Italy and the USA for the presence of the IS and we found its presence in more than 63% of the isolates. The hybridization patterns obtained vary considerably between unrelated strains and allow further classification among ribotype-grouped species.  相似文献   

20.
Lactobacillus plantarum strains isolated and identified from naturally-fermented Chinese sauerkraut were examined in vitro for potential probiotic properties and in vivo for cholesterol-lowering effect in mice. Among 7 isolated L. plantarum strains, strains S2-5 and S4-1 were found to possess desirable probiotic properties including ability to survive at pH 2.0 for 60 min, tolerate pancreatin and bile salts, adhere to Caco-2 cells, produce high β-galactosidase activity and antimicrobial activity against Escherichia coli O157 and Shigella flexneri CMCC(B). In addition, strains S2-5 and S4-1 were susceptible to several antibiotics, and capable of reducing cholesterol level in MRS medium by assimilation of cholesterol at 20.39 and 22.28 μg ml?1, respectively. The in vivo study with L. plantarum S4-1 showed that feeding with fermented milk containing this strain was able to effectively reduce serum cholesterol level in mice, demonstrating its potential as an excellent probiotic candidate for applications in functional products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号