首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Phytophagous insects of estuarine salt marshes which live inside their host plants are not directly exposed to estuarine gradients. Host plant quality, however, may change along the estuary as a result of the direct effects of these gradients; as a consequence growth and development of endophagous insects may be influenced. The results of a study of the life cycle of Agapanthia villosoviridescens (Coleoptera, Cerambycidae), a stem-borer of the halophyte Aster tripolium, on three salt marshes along the Westerschelde estuary (the Netherlands) are in line with this hypothesis. It was shown that in upstream direction (1) mean larval weights were consistently higher during the entire period of larval development; (2) the percentage of late instars on a given sampling date generally was higher; (3) the percentage of larvae which underwent successful metamorphosis increased. Furthermore, (4) dry weight of the imagos was highest on the least saline marsh. The effects of estuarine gradients on the Aster host plants was indicated by differences in growth and chloride content between the populations of the three marshes. The non-overlapping geographic distribution of Agapanthia villosoviridescens and its host plant Aster tripolium on the Westerschelde salt marshes may be related to the effects of estuarine gradients on the suitability of the host plant.  相似文献   

2.
Summary The performance of phytophagous insects is influenced by the nutritional quality of the food plant, which may vary with environmental conditions. Hardly any information exists on food-plant mediated effects of variable soil salinity on the performance of phytophagous insects. Conspicuous differences in salinity levels, however, are found in soils of intertidal wetlands such as salt marshes and mangroves. The growth of larvae of Bucculatrix maritima, a leaf miner of the salt marsh halophyte Aster tripolium, was studied on the host plant along the salinity gradient of the Westerschelde estuary (S.W. Netherlands). In addition, its performance on A. tripolium grown on low or high salinity culture medium was investigated experimentally. Although salinity conditions significantly influenced the chemistry of the host plants, insect performance seemed almost unaffected, although near the mouth of the estuary high environmental salinities may have caused some inhibition of larval growth. The results contrast with our previous studies on the stem-borer Agapanthia villosoviridescens, which showed that growth and development was conspicuously influenced by the changing characteristics of Aster tripolium along the estuarine salinity gradient. The location-dependent qualities of halophytes in an estuary thus appear to have species-specific effects on insect performance. We hypothesize that this phenomenon contributes to the existence of non-identical distribution patterns of phytophagous insects associated with the same halophyte in an estuary.  相似文献   

3.
In the Westerschelde estuary, salt marshes are present as isolated patches fringing the estuary. In the present paper tidal transport of stem-boring larvae of Agapanthia villosoviridescens (Coleoptera) from salt marshes of the upper reaches of the Westerschelde estuary to marshes of the lower reaches is demonstrated. The evidence for the origin of the larvae is based on comparisons of growth and development characteristics of larvae found in flood debris belts and resident larval populations. These characteristics are different on the various salt marshes along the Westerschelde, probably as a result of estuarine gradients. Additional evidence for the larval origin comes from the plant composition of the flood debris. The occurrence of upward tidal transport is discussed. Considering the comparatively large area of salt marshes in the upper estuary, tidal dispersal of larvae probably will be dominated by transport in seaward direction. So far, very little is known on the role of tidal currents with regard to the exchange between salt marsh populations. The present results suggest that tidal transport may not only be important for dispersal of aquatic organisms in an estuary, but also for organisms inhabiting the semi-terrestrial estuarine salt marshes.  相似文献   

4.
The relation between decomposition rates and soil salinity and moisture conditions in tidal marshes of the Westerschelde estuary was investigated. In the first part of the study, these soil factors were experimentally manipulated in field plots which were either screened from rainwater or which received an additional weekly supply of freshwater from April to September 1989. These treatments had no clear effect on soil salinities and moisture conditions in a low marsh site. Decomposition rates of Spartina anglica leaves (kept in litterbags in the plots) also did not differ between treatments. In screened plots of a middle marsh site, decomposition rate of Elymus pycnanthus leaves decreased significantly. The effect of the experimental treatments on soil moisture content was variable, but comparatively high soil salinity values (up to 61.3) were consistently found in these plots. It is suggested that the elevated salinity levels induced the decrease in decomposition rate.In the second part of the study, cellulolytic decomposition, measured by loss of tensile strength of strips of cotton test cloth, was investigated in relation to a non-manipulated range of soil salinities (3.8–24.2), by exposing the strips in a series of tidal marshes along the salt gradient of the Westerschelde estuary. No correlation between decomposition rate and soil salinity was found. In addition, no relation was found between decomposition rate and soil water content. The results of both parts of this study lead us to the hypothesis that rate limitation of decomposition in estuarine tidal marsh soils is found at high soil salinities only.  相似文献   

5.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

6.
Recognition of salt marsh plant detritus as a nutritious source of food for estuarine consumers prompted investigation of in situ decomposition and proximate nutritive values of three plants and their detritus namely: Spartina cynosuroides and Distichlis spicata (Gramineae) and Scirpus americanus (Cyperaceae) growing abundantly in Mississippi tidal marshes. During decomposition to particulate detritus, these plants retain 60–70% organic content and the caloric value either remains the same or increases slightly. Crude fiber, carbohydrate, and fat contents decline but protein shows 96–300% increase from dead plants to particulate detritus stage.  相似文献   

7.
《Aquatic Botany》2007,87(2):134-140
Tidal marshes have recently been shown to be important biogenic Si recycling surfaces at the land–sea interface. The role of vegetation in this recycling process has not yet been quantified. In situ and ex situ decomposition experiments were conducted with Phragmites australis stems. In a freshwater tidal marsh, litterbags were incubated at different elevations and during both winter and summer. Biogenic Si (BSi) dissolution followed a double exponential decay model in the litterbags (from ca. 60 to 15 mg g−1 after 133 days), irrespective of season. Si was removed much faster from the incubated plant material compared to N and C, resulting in steadily decreasing Si/N and Si/C ratios. Ex situ, decomposition experiments were conducted in estuarine water, treated with a broad-spectrum antibiotic, and compared to results from untreated incubations. The bacterial influence on the dissolution of dissolved Si (DSi) from P. australis stems was negligible. Although the rate constant for dissolved Si dissolution decreased from 0.004 to 0.003 h−1, the eventual amount of BSi dissolved and saturation concentration in the incubation environment were similar in both treatments. P. australis contributes to and enhances dissolved Si recycling capacity of tidal marshes: in a reed-dominated small freshwater tidal marsh, more than 40% of DSi export was attributable to reed decomposition. As the relation between tidal marsh surface and secondary production in estuaries has been linked to marsh Si cycling capacity, this provides new insight in the ecological value of the common reed.  相似文献   

8.
曾志华  杨民和  佘晨兴  仝川 《生态学报》2014,34(10):2674-2681
为认识盐度对河口潮汐沼泽湿地土壤产甲烷菌的影响,应用PCR-RFLP技术及测序分析对闽江河口区淡水-半咸水盐度梯度上分布的4个短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构进行研究。闽江河口区短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构受盐度影响明显,位于下洋洲和塔礁洲的短叶茳芏潮汐淡水沼泽湿地土壤产甲烷菌的香农-威纳多样性指数值分别为2.81和2.65,位于蝙蝠洲和鳝鱼滩的短叶茳芏潮汐半咸水沼泽湿地土壤产甲烷菌香农-威纳多样性指数值分别仅为2.33和2.27。系统发育分析表明:短叶茳芏沼泽湿地土壤产甲烷菌类群主要有甲烷杆菌目(Methanobacteriales),包括Methanobacterium、Methanobrevibacter和Methanobacteriaceae;甲烷微菌目(Methanomicrobiales),主要有Methanoregula,以及甲烷八叠球菌目(Methanosarcinales),主要有Methanosarcina和Methanococcoides。闽江河口区短叶茳芏潮汐淡水沼泽湿地土壤主要的优势产甲烷菌有Methanoregula、Methanosarcina和Methanobacterium,而短叶茳芏潮汐半咸水沼泽湿地土壤主要的优势产甲烷菌则转化为仅以Methanoregula为主。  相似文献   

9.
Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low estuarine marsh, high estuarine marsh, and tidal palustrine marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High estuarine marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in tidal palustrine and high estuarine marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.  相似文献   

10.
The factors which may influence temporal and spatial variation in plant arbuscular mycorrhizal (AM) colonization and propagule occurrence were evaluated in a Portuguese salt marsh poor in plant diversity. Two distinct sites were studied: a more-flooded (low marsh) and a less-flooded zone (high marsh). AM root colonization, AM fungal spore number and inoculum potential, soil edaphic parameters and tidal flooding time periods were analysed. Levels of AM colonization were considerable in Aster tripolium and Inula crithmoides but very low in Puccinellia maritima and non-existent in Spartina maritima, Halimione portulacoides, Arthrocnemum fruticosum and Arthrocnemum perenne. Fungal diversity was very low, with Glomus geosporum dominant at both marsh zones. Colonization showed no spatial variation within marsh zones but temporal variation was observed in the high marsh, dependent on plant phenological phases. In the low marsh, no significantly seasonal variation was observed. Apparently, plant phenological events were diluted by stressful conditions (e.g. flooding, salinity). Spore density was significantly different between marsh zones and showed temporal variation in both zones. This study showed that distribution of mycorrhizas in salt marsh is more dependent on host plant species than on environmental stresses.  相似文献   

11.
It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.  相似文献   

12.
Because of land reclamation, reinforcement of dikes, and the deepening of shipping channels, large areas of tidal marshes have been removed or eroded from the Scheldt estuary during the last two centuries. Tidal wetland restoration contributes toward compensating this loss of habitat. Not all restoration projects are meticulously planned, however; some are forced by nature. During a severe storm in 1990, a dike was breached in the brackish part of the Scheldt estuary and returned tidal influence to the Sieperda polder. In the 10 years since the dike breach, the former polder has changed into a brackish tidal marsh. Here we report on the geomorphologic and ecological developments that have taken place in the marsh. Tidal intrusion into the former polder turned crop fields into mudflats and changed pastures into salty marsh vegetation. The digging of a new creek improved marsh hydrology and enhanced tidal intrusion further into the marsh. Macrofauna typical of estuarine mudflats established rapidly in the developing marsh. Vegetation succession took place rapidly. Within 5 years, large areas of mudflats became covered with marsh vegetation. Birds characteristic of salt marshes were observed breeding or seen foraging in the marsh. The number of wading birds declined as areas of mudflat became overgrown. It is demonstrated that tidal flow is the engine to tidal marsh restoration. Tidal influence caused geomorphologic changes, which directed ecological developments in the former polder.  相似文献   

13.
For an estuarine restoration project to be successful it must reverse anthropogenic effects and restore lost ecosystem functions. Restoration projects that aim to rehabilitate endangered species populations make project success even more important, because if misjudged damage to already weakened populations may result. Determining project success depends on our ability to assess the functional state or “performance” and the trajectory of ecosystem development. Mature system structure is often the desired “end point” of restoration and is assumed to provide maximum benefit for target species; however, few studies have measured linkages between structure and function and possible benefits available from early recovery stages. The Salmon River estuary, Oregon, U.S.A., offers a unique opportunity to simultaneously evaluate several estuarine restoration projects and the response of the marsh community while making comparisons with a concurring undiked portion of the estuary. Dikes installed in three locations in the estuary during the early 1960s were removed in 1978, 1987, and 1996, creating a “space‐for‐time substitution” chronosequence. Analysis of the marsh community responses enables us to use the development state of the three recovering marshes to determine a trajectory of estuarine recovery over 23 years and to make comparisons with a reference marsh. We assessed the rate and pattern of juvenile salmon habitat development in terms of fish density, available prey resources, and diet composition of wild juvenile Oncorhynchus tshawytscha (chinook salmon). Results from the outmigration of 1998 and 1999 show differences in fish densities, prey resources, and diet composition among the four sites. Peaks in chinook salmon densities were greatest in the reference site in 1998 and in the youngest (1996) site in 1999. The 1996 marsh had higher densities of chironomids (insects; average 864/m2) and lower densities of amphipods (crustaceans; average 8/m3) when compared with the other sites. Fauna differences were reflected in the diets of juvenile chinook with those occupying the 1978 and 1996 marshes based on insects (especially chironomids), whereas those from the 1987 and reference marshes were based on crustaceans (especially amphipods). Tracking the development of recovering emergent marsh ecosystems in the Salmon River estuary reveals significant fish and invertebrate response in the first 2 to 3 years after marsh restoration. This pulse of productivity in newly restored systems is part of the trajectory of development and indicates some level of early functionality and the efficacy of restoring estuarine marshes for juvenile salmon habitat. However, to truly know the benefits consumers experience in recovering systems requires further analysis that we will present in forthcoming publications.  相似文献   

14.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

15.
The salt marshes along the Westerschelde estuary have been influenced by various human activities of which reclamation has been a major cause for the loss of salt marsh area. The salinity gradient in the aquatic system is also mirrored in the vegetation of the salt marshes.The role of the salt marshes for the estuary as a whole is manifold but a major importance is their function as a sink for anthropogenic substances.The possible role as a carbon and mineral source for the estuary is discussed in this paper. It is estimated that the total area of salt marsh adds about 8% to the organic matter input in the estuary while the nutrient input may be as high as 25%.Communication nr. 403 of the Delta Institute, Yerseke.  相似文献   

16.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

17.
The emergence of seedlings, the length of roots and shoots, and the biomass of four dominant plant species and shore height were measured to investigate the growth strategy of these plants on the salt marsh of Mankyung River estuary. Four salt marsh plants showed a distinctive zonation, for example, Suaeda japonica was predominantly spread around the low salt marsh, Atriplex gmelini and Aster tripolium were in the middle, and S. asparagoides was in the upper part of the marsh. In terms of emergence of seedlings, S. japonica appeared first followed by A. gmelini, S. asparagoides, and A. tripolium. The growth strategies of halophytes were as follows: S. japonica germinated earlier than the other halophytes so that its root grew rapidly and extensively at the beginning of growth. This species adopted a continuous germination strategy, allowing growth whenever favorable conditions were provided. A. gmelini germinated later than S. japonica, as a quasi-simultaneous germination type, it showed the highest germination rate within the shortest time. Aster tripolium germinated later than any other halophyte. Since this species exhibited characteristics between the continuous germination type and the quasi-simultaneous germination type, it did not show a very high germination rate. Instead, it showed continuous germination and consistent growth of both above-ground and underground parts. Suaeda asparagoides showed an especially high emergence rate at the beginning of its growth. However, the high density retarded its growth until the middle stage. Its roots extended longer than the other halophytes, allowing it to grow well in the dry conditions of the upper marsh.  相似文献   

18.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

19.
20.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号