首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2 approximately P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2 approximately P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2 approximately P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.  相似文献   

4.
Streptomyces coelicolor produces four known antibiotics. To define genetic elements that regulate antibiotic synthesis, we screened for mutations that visibly blocked synthesis of the two pigmented antibiotics and found that the mutant strains which we recovered were of two classes--double mutants and mutants in which all four antibiotics were blocked. The mutations in these multiply blocked strains define a new locus of S. coelicolor which we have named absA. The genetic location of absA, at 10 o'clock, is distinct from the locations of the antibiotic gene clusters and from other known mutations that affect antibiotic synthesis. The phenotype of the absA mutants suggests that all S. coelicolor antibiotic synthesis genes are subject to a common global regulation that is at least in part distinct from sporulation and that absA is a genetic component of the regulatory mechanism.  相似文献   

5.
6.
Influence of cloned regulatory genes on biosynthesis of nogalamicin by Streptomyces nogalater LV65 strains has been studied. Gene snorA from the S. nogalater genome was cloned in multicopy replicative plasmid pSOKA and integrative plasmid pR3A. Introduction of these plasmids into the cells of wild type strain of S. nogalater LV65 resulted in higher synthesis of nogalamicin. A similar effect was observed at heterologous expression of gene ppGpp of synthetase relA cloned in S. coelicolor A3(2). Heterologous expression of genes absA2from S. ghanaensis ATCC14672 and lndyR from genome S. globisporus 1912 decreased synthesis of antibiotic. The study results indicate the presence of homologs of these genes in chromosome of S. nogalater, their possible participation in regulation of nogalamicin biosynthesis, and provide us with a possibility for genetic design of the strains with higher synthesis of this antibiotic.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Production of the red antibiotic, undecylprodigiosin, by Streptomyces coelicolor A3(2) was studied by DNA cloning and biochemical analysis. Over 21 kb of genomic DNA were cloned, in several segments, into plasmid vectors. The cloned DNA 'complemented' several specific mutations in the red gene cluster. Four red genes (redA, B, E, and F) were mapped to different regions within the cloned DNA. Screening with redE probes for DNA homologies among various streptomycetes revealed hybridizing DNA in three strains, one of them not known to synthesize prodigiosin pigments. Biochemical studies using protoplasted cells revised our interpretation of the nature of redE and redF mutations. Two forms of undecylnorprodigiosin: S-adenosylmethionine O-methyltransferase activity on gel filtration columns were detected: a very high molecular mass peak (greater than 5 MDal) and a 49 kDal) and a 49 kDal peak. Analyses of extracts from red mutants suggested that these two forms are related, and that at least the redE and redF gene products are necessary for O-methyltransferase activity in vivo. Lack of activity of the redE gene in a heterologous host, S. glaucescens, is consistent with the necessity for a biosynthetic complex involving several red gene products for efficient expression. Experiments in liquid antibiotic production medium indicated that prodigiosin compounds in S. coelicolor are examples of 'secondary metabolites' whose synthesis lags behind that of cell mass. The peak of specific activity of O-methyltransferase coincided with the 'late exponential' phase of growth. Thus, understanding the genetic regulation of undecylprodigiosin biosynthesis in S. coelicolor may be relevant to other antibiotic production pathways, and perhaps to 'secondary' metabolism in general.  相似文献   

15.
16.
17.
Bacteria typically undergo intermittent periods of starvation and adaptation, emulated as diauxic growth in the laboratory. In association with growth arrest elicited by metabolic stress, the differentiating eubacterium Streptomyces coelicolor not only adapts its primary metabolism, but can also activate developmental programmes leading to morphogenesis and antibiotic biosynthesis. Here, we report combined proteomic and metabolomic data of S. coelicolor used to analyse global changes in gene expression during diauxic growth in a defined liquid medium. Cultures initially grew on glutamate, providing the nitrogen source and feeding carbon (as 2-oxoglutarate) into the TCA cycle, followed by a diauxic delay allowing reorientation of metabolism and a second round of growth supported by NH4+, formed during prediauxic phase, and maltose, a glycolytic substrate. Cultures finally entered stationary phase as a result of nitrogen starvation. These four physiological states had previously been defined statistically by their distinct patterns of protein synthesis and heat shock responses. Together, these data demonstrated that the rates of synthesis of heat shock proteins are determined not only by temperature increase but also by the patterns and rates of metabolic flux in certain pathways. Synthesis profiles for metabolic- and stress-induced proteins can now be interpreted by the identification of 204 spots (SWICZ database presented at http://proteom.biomed.cas.cz). Cluster analysis showed that the activity of central metabolic enzymes involved in glycolysis, the TCA cycle, starvation or proteolysis each displayed identifiable patterns of synthesis that logically underlie the metabolic state of the culture. Diauxic lag was accompanied by a structured regulatory programme involving the sequential activation of heat-, salt-, cold- and bacteriostatic antibiotic (pristinamycin I, PI)-induced stimulons. Although stress stimulons presumably provide protection during environmental- or starvation-induced stress, their identities did not reveal any coherent adaptive or developmental functions. These studies revealed interactive regulation of metabolic and stress response systems including some proteins known to support developmental programmes in S. coelicolor.  相似文献   

18.
The stringent response in Streptomyces coelicolor A3(2)   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号