首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

2.
《Insect Biochemistry》1991,21(3):327-333
In vivo and in vitro experiments were performed to examine the role of succinate and other potential precursors of the methylmalonyl-CoA used for methyl-branched hydrocarbon biosynthesis in the termite Zootermopsis nevadensis. The in vivo incorporation of [1,4-14C]succinate and [2,3-14C]succinate into hydrocarbon confirmed that succinate is a direct precursor to the methyl branch unit. The other likely precursors, the branched chain amino acids valine and isoleucine, were not efficiently incorporated into hydrocarbon. Carbon-13 NMR showed that one of the labeled carbons of [1,4-13C]succinate labeled position 6 of 5-methylalkanes and positions 6 and 18 of 5,17-dimethylalkanes, indicating that succinate, as a methylmalonyl-CoA unit, was incorporated as the third unit to form 5-methylheneicosane and as both the third and ninth units to form 5,17-dimethylheneicosane. Analysis of organic acids after the in vivo metabolism of [2,3-14C]succinate showed that succinate was converted to propionate and methylmalonate. Labeled succinate injected into the hemolymph was readily taken up by the gut tract. Isolated gut tissue efficiently converted succinate to acetate and propionate, both of which were released into the incubation media. Mitochondria from termite tissue (minus gut tract) converted succinate to methylmalonate and propionate only in the presence of malonic acid, an inhibitor of succinate dehydrogenase. The results of these studies show that while termite mitochondria are able to convert succinate to propionate and methylmalonate, most of the propionate used for methyl-branched hydrocarbon biosynthesis is produced by gut tract microorganisms. The propionate is then presumably transported through the hemolymph to epidermal cells for use in methyl-branched hydrocarbon biosynthesis.  相似文献   

3.
Laminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial products enter the bloodstream and precipitate systemic inflammation. Hindgut lactate levels are normally low because specific bacterial groups convert lactate to short chain fatty acids. Why this mechanism fails when lactate levels rapidly rise, and why some hindgut communities can recover is unknown. Fecal samples from three adult horses eating identical diets provided bacterial communities for this in vitro study. Triplicate microcosms of fecal slurries were enriched with lactate and/or starch. Metabolic products (short chain fatty acids, headspace gases, and hydrogen sulfide) were measured and microbial community compositions determined using Illumina 16S rRNA sequencing over 12-hour intervals. We report that patterns of change in short chain fatty acid levels and pH in our in vitro system are similar to those seen in in vivo laminitis induction models. Community differences between microcosms with disparate abilities to clear excess lactate suggest profiles conferring resistance of starch-induction conditions. Where lactate levels recover following starch induction conditions, propionate and acetate levels rise correspondingly and taxa related to Megasphaera elsdenii reach levels exceeding 70% relative abundance. In lactate and control cultures, taxa related to Veillonella montpellierensis are enriched as lactate levels fall. Understanding these community differences and factors promoting the growth of specific lactate utilizing taxa may be useful to prevent acidosis under starch-induction conditions.  相似文献   

4.
The diffusional water permeability (Pd) in various gut structures of the fleshfly, Sarcophaga bullata, was measured using tritiated water. Water Pd in the larval hindgut was 3.91 × 10?6 cm/sec, whereas in the adult hindgut it was 4.4 × 10?4 cm/sec. The presence of cuticle in various parts of the gut apparently controls the water permeabilities of these structures. Furthermore, the water permeability of the cuticle may be correlated with the mechanism for the production of a hyperosmotic excretion in the hindgut.  相似文献   

5.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

6.
Abyssal holothurians and sediment samples were collected at depths of 4,430 to 4,850 m in the Demerara abyssal plain. Bacterial concentrations in progressive sections of the holothurian digestive tract, as well as in surrounding surface sediments, were determined by epifluorescence microscopy. Total bacterial counts in sediments recently ingested by the animals were 1.5- to 3-fold higher than in surrounding sediments at the deepest station. Lowest counts were observed consistently in the foregut, where the digestive processes of the holothurian are believed to occur. In most animals, counts increased 3- to 10-fold in the hindgut. Microbial activity at 3°C and in situ and atmospheric pressure were determined for gut and sediment samples by measuring the utilization of [14C]glutamic acid, the doubling time of the mixed-population of culturable bacteria, and the percentage of the total bacterial count responsive to yeast extract in the presence of nalidixic acid, using epifluorescence microscopy. A barophilic microbial population, showing elevated activity under deep-sea pressure, was detected by all three methods in sediments removed from the hindgut. Transmission electron micrographs revealed intact bacteria directly associated with the intestinal lining only in the hindgut. The bacteria are believed to be carried as an actively metabolizing, commensal gut flora that transforms organic matter present in abyssal sediments ingested by the holothurian. Using data obtained in this study, it was calculated that sediment containing organic matter altered by microbial activity cleared the holothurian gut every 16 h, suggesting that abyssal holothurians and their associated gut flora are important participants in nutrient cycles of the abyssal benthic ocean.  相似文献   

7.
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa120/120 or Tie2-Cre;Nrp1fl/− mice or using an in vitro Wnt1-Cre;Rosa26Yfp/+ mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet51 mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.  相似文献   

8.
The guts of soil-feeding macroinvertebrates contain a complex microbial community that is involved in the transformation of ingested soil organic matter. In a companion paper (T. Lemke, U. Stingl, M. Egert, M. W. Friedrich, and A. Brune, Appl. Environ. Microbiol. 69:6650-6658, 2003), we show that the gut of our model organism, the humivorous larva of the cetoniid beetle Pachnoda ephippiata, is characterized by strong midgut alkalinity, high concentrations of microbial fermentation products, and the presence of a diverse, yet unstudied microbial community. Here, we report on the community structure of bacteria and archaea in the midgut, hindgut, and food soil of P. ephippiata larvae, determined with cultivation-independent techniques. Clone libraries and terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that the intestines of P. ephippiata larvae contain a complex gut microbiota that differs markedly between midgut and hindgut and that is clearly distinct from the microbiota in the food soil. The bacterial community is dominated by phylogenetic groups with a fermentative metabolism (Lactobacillales, Clostridiales, Bacillales, and Cytophaga-Flavobacterium-Bacteroides [CFB] phylum), which is corroborated by high lactate and acetate concentrations in the midgut and hindgut and by the large numbers of lactogenic and acetogenic bacteria in both gut compartments reported in the companion paper. Based on 16S rRNA gene frequencies, Actinobacteria dominate the alkaline midgut, while the hindgut is dominated by members of the CFB phylum. The archaeal community, however, is less diverse. 16S rRNA genes affiliated with mesophilic Crenarchaeota, probably stemming from the ingested soil, were most frequent in the midgut, whereas Methanobacteriaceae-related 16S rRNA genes were most frequent in the hindgut. These findings agree with the reported restriction of methanogenesis to the hindgut of Pachnoda larvae.  相似文献   

9.
Hindgut Fermentation in Three Species of Marine Herbivorous Fish   总被引:2,自引:0,他引:2       下载免费PDF全文
Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosus sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO2, and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).  相似文献   

10.
Methanogenesis and homoacetogenesis occur simultaneously in the hindguts of almost all termites, but the reasons for the apparent predominance of methanogenesis over homoacetogenesis in the hindgut of the humivorous species is not known. We found that in gut homogenates of soil-feeding Cubitermes spp., methanogens outcompete homoacetogens for endogenous reductant. The rates of methanogenesis were always significantly higher than those of reductive acetogenesis, whereas the stimulation of acetogenesis by the addition of exogenous H2 or formate was more pronounced than that of methanogenesis. In a companion paper, we reported that the anterior gut regions of Cubitermes spp. accumulated hydrogen to high partial pressures, whereas H2 was always below the detection limit (<100 Pa) in the posterior hindgut, and that all hindgut compartments turned into efficient H2 sinks when external H2 was provided (D. Schmitt-Wagner and A. Brune, Appl. Environ. Microbiol. 65:4490–4496, 1999). Using a microinjection technique, we found that only the posterior gut sections P3/4a and P4b, which harbored methanogenic activities, formed labeled acetate from H14CO3. Enumeration of methanogenic and homoacetogenic populations in the different gut sections confirmed the coexistence of both metabolic groups in the same compartments. However, the in situ rates of acetogenesis were strongly hydrogen limited; in the P4b section, no activity was detected unless external H2 was added. Endogenous rates of reductive acetogenesis in isolated guts were about 10-fold lower than the in vivo rates of methanogenesis, but were almost equal when exogenous H2 was supplied. We conclude that the homoacetogenic populations in the posterior hindgut are supported by either substrates other than H2 or by a cross-epithelial H2 transfer from the anterior gut regions, which may create microniches favorable for H2-dependent acetogenesis.  相似文献   

11.
A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and 14CH4 added to the air headspace over live termites was not converted to 14CO2. Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detect pmoA, the marker gene for particulate methane monooxygenase, in hindgut DNA extracts of all termites investigated. This adds robustness to our concept of the degradation network in the termite hindgut and eliminates the gut itself as a potential sink of this important greenhouse gas.  相似文献   

12.
The soil macrofauna plays an important role in the carbon and nitrogen cycle of terrestrial ecosystems. In order to gain more insight into the role of the intestinal microbiota in transformation and mineralization of organic matter during gut passage, we characterized the physicochemical conditions, microbial activities, and community structure in the gut of our model organism, the humus-feeding larva of the cetoniid beetle Pachnoda ephippiata. Microsensor measurements revealed an extreme alkalinity in the midgut, with highest values (pH > 10) between the second and third crown of midgut ceca. Both midgut and hindgut were largely anoxic, but despite the high pH, the redox potential of the midgut content was surprisingly high even in the largest instar. However, reducing conditions prevailed in the hindgut paunch of all instars (Eh ~ −100 mV). Both gut compartments possessed a pronounced gut microbiota, with highest numbers in the hindgut, and microbial fermentation products were present in high concentrations. The stimulation of hindgut methanogenesis by exogenous electron donors, such as H2, formate, and methanol, together with considerable concentrations of formate in midgut and hemolymph, suggests that midgut fermentations are coupled to methanogenesis in the hindgut by an intercompartmental transfer of reducing equivalents via the hemolymph. The results of a cultivation-based enumeration of the major metabolic groups in midgut and hindgut, which yielded high titers of lactogenic, propionigenic, and acetogenic bacteria, are in good agreement not only with the accumulation of microbial fermentation products in the respective compartments but also with the results of a cultivation-independent characterization of the bacterial communities reported in the companion paper (M. Egert, B. Wagner, T. Lemke, A. Brune, and M. W. Friedrich, Appl. Environ. Microbiol. 69:6659-6668, 2003).  相似文献   

13.
The ability of three natural products (neem extract, capsaicin, and gleditschia) to reduce the number of Formosan subterranean termite (FST) hindgut microbes was investigated. FSTs were placed in Petri dishes containing a food source soaked in one of these extracts/compounds. The numbers of three flagellated protozoan species that inhabit the FST hindgut (Pseudotrichonympha grassii, Spirotrichonympha leidyi and Holomastigotoides hartmanni) and spirochaetes were counted over a defined period and analysed for changes in abundance. The results indicated that the neem extract was capable of reducing the population of P. grassii and spirochaetes. Exposure to this extract resulted in significant FST mortality. However, gleditschia extract and capsaicin did not reduce the FST gut microbial population at the concentrations used in this study.  相似文献   

14.
Mean pH values in pooled samples of foregut, midgut, and hindgut from adult Melanoplus sanguinipes, which had been raised in the laboratory on barley shoots and wheat bran, were 5.15, 6.39, and 5.98, respectively. Homogenates of midgut/hindgut sections and frass (feces) yielded colony counts of bacteria by the spread plate method of 5.7 to 5.9 and 5.3 to 5.5 log10 colonies per mg, respectively; there were no significant differences (P > 0.05) between counts obtained on several media or on media incubated aerobically or anaerobically. There was no evidence of significant populations of protozoa, fungi, or obligately anaerobic bacteria associated with the gut. A total of 168 pure strains of bacteria isolated from the gut sections were characterized and assigned to 11 taxonomic groups, including Enterococcus spp., Serratia liquefaciens, Pseudomonas spp., and Enterobacter spp. Numbers of Enterococcus spp. in the gut were 2 to 3 orders of magnitude higher than those of the other genera. Strains representing only four of the groups were recovered from bran fed to the grasshoppers; the barley shoots, which were raised in sterile soil, appeared virtually sterile. Examination of the gut wall by scanning electron microscopy revealed the presence of epimural bacteria in the foregut and hindgut but not in the midgut. The distribution of epimural cocci and bacilli differed with the gut section examined. Numerous spherical to ovoid structures up to 10 μm in diameter, which were not identified, were associated with the microvillous surface of the midgut epithelium. Acetate was present in gut, hemolymph, and frass, and it was shown that representative isolates of Enterococcus spp. and Enterobacter agglomerans produced acetate when incubated in an aqueous suspension of bran. The egestion time of solid digesta, as measured with methylene blue-stained barley shoots, was 3.0 to 5.7 h. The results show that M. sanguinipes supported extensive indigenous populations of luminal and epimural bacteria in the gut which were composed predominantly of facultatively anaerobic species; the relatively short egestion time, indicating rapid passage of digesta through the gut, was consistent with the microscopic appearance of digesta residues in frass and could account, at least in part, for the absence of a significant population of obligately anaerobic bacteria from the gut.  相似文献   

15.
The gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life. We evaluated three different growth stages in an Angus-Brahman multibreed population with a graduated spectrum of genetic variation, raised under variable environmental conditions and diets. We found the gut microbiota structure was changed significantly during growth when preweaning, and fattening calves experienced large variations in diet and environmental changes. However, regardless of the growth stage, we found gut microbiota is significantly influenced by breed composition throughout life. Host genetics explained the relative abundances of 52.2%, 40.0%, and 37.3% of core bacterial taxa at the genus level in preweaning, postweaning, and fattening calves, respectively. Sutterella, Oscillospira, and Roseburia were consistently associated with breed composition at these three growth stages. Especially, butyrate-producing bacteria, Roseburia and Oscillospira, were associated with nine single-nucleotide polymorphisms (SNPs) located in genes involved in the regulation of host immunity and metabolism in the hindgut. Furthermore, minor allele frequency analysis found breed-associated SNPs in the short-chain fatty acids (SCFAs) receptor genes that promote anti-inflammation and enhance intestinal epithelial barrier functions. Our findings provide evidence of dynamic and lifelong host genetic effects upon gut microbiota, regardless of growth stages. We propose that diet, environmental changes, and genetic components may explain observed variation in critical hindgut microbiota throughout life.Subject terms: Microbiome, Agricultural genetics  相似文献   

16.
The total lipid and free fatty acid contents of Isotricha intestinalis, Entodinium simplex, and the rumen bacterial flora of the respective protozoa were determined. Warburg manometric data showed that the sodium salts of tributyrin, oleic, and acetic acids stimulated gas production in I. intestinalis, whereas tributyrin was stimulatory with E. simplex and less active with oleic and acetic acids. Rumen bacteria provided fatty acids produced lower manometric gaseous increases when compared with the protozoa. Volatile fatty acids were produced by I. intestinalis and rumen bacteria with tributyrin, but not with tripalmitin. Sodium oleate gave little volatile fatty acid response with I. intestinalis or rumen bacteria. Washed suspensions of I. intestinalis and rumen bacteria concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Autoradiographs demonstrated the conversion of C14-labeled oleic, palmitic, stearic, linoleic, and acetic acids in the rumen protozoa and bacterial cells.  相似文献   

17.
In the intestinal tracts of animals, methanogenesis from CO2 and other C1 compounds strictly depends on the supply of electron donors by fermenting bacteria, but sources and sinks of reducing equivalents may be spatially separated. Microsensor measurements in the intestinal tract of the omnivorous cockroach Blaberus sp. showed that molecular hydrogen strongly accumulated in the midgut (H2 partial pressures of 3 to 26 kPa), whereas it was not detectable (<0.1 kPa) in the posterior hindgut. Moreover, living cockroaches emitted large quantities of CH4 [105 ± 49 nmol (g of cockroach)−1 h−1] but only traces of H2. In vitro incubation of isolated gut compartments, however, revealed that the midguts produced considerable amounts of H2, whereas hindguts emitted only CH4 [106 ± 58 and 71 ± 50 nmol (g of cockroach)−1 h−1, respectively]. When ligated midgut and hindgut segments were incubated in the same vials, methane emission increased by 28% over that of isolated hindguts, whereas only traces of H2 accumulated in the headspace. Radial hydrogen profiles obtained under air enriched with H2 (20 kPa) identified the hindgut as an efficient sink for externally supplied H2. A cross-epithelial transfer of hydrogen from the midgut to the hindgut compartment was clearly evidenced by the steep H2 concentration gradients which developed when ligated fragments of midgut and hindgut were placed on top of each other—a configuration that simulates the situation in vivo. These findings emphasize that it is essential to analyze the compartmentalization of the gut and the spatial organization of its microbiota in order to understand the functional interactions among different microbial populations during digestion.  相似文献   

18.
The abundance of bacteria in the gut of Schistocerca gregaria was determined. A large population of Enterobacteriaceae was found with numbers increasing posteriorly from foregut to rectal sac. In the hindgut, Enterobacter agglomerans was the dominant organism. Streptococci were also present but they were 10- to 100-fold less numerous than the Enterobacteriaceae. The distribution of the microflora was investigated using light microscopy and scanning electron microscopy. Bacteria in the anterior regions of the gut were restricted to the lumen and inside of the peritrophic membrane. However, in the hindgut, bacteria were also associated with the cuticular lining.  相似文献   

19.
The redox potential and pH of the gut of the termites Nasutitermes exitiosus and Coptotermes lacteus was investigated by feeding the insects with redox dyes and pH indicators. For N. exitiosus the E′0 (pH 7.0) of the foregut was above +200 mV; the midgut was about +100 to +150 mV and the hindgut was in the region of ?20 to +30 mV. For C. lacteus the fore- and midgut were about +30 to +50 mV and the hindgut about ?20 to +20 mV. The colours of the ingested dyes indicated that the gut was aerobic in both termites. The pH of the whole gut ranged from 6.5 to 7.5 for N. exitiosus and 6.0 to 7.0 for C. lacteus.  相似文献   

20.
Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3β, 5α) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3β, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号