首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentration of protein granules was determined cytologically in different regions of the fat body during the latter half of the third larval instar of Drosophila melanogaster. The measurements made at 6 hr intervals from 72–96 hr larvae showed that the concentration of the granules was the highest in the posterior, lowest in the anterior and intermediate in the middle region of the fat body. From these measurements, it was shown that the rate of granule formation was different in each region. Furthermore, there is a strong indication that at any given stage, the rate increases gradually and continuously from the anterior to the posterior region. When the fat body from larvae prior to the time of granule formation was cultured for three days in ecdysterone-containing medium, protein granules were produced in the anterior, middle and posterior regions in the same concentration as that in 90 hr larvae. The same gradient of protein granule formation in vitro is found whether the fat body is cultured as an intact piece or as three separate, dissected regions. The putative adaptive advantage of region-dependent granule formation is discussed.  相似文献   

2.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

3.
Protein metabolism in salivary glands, gut, haemolymph, and fat body during the last larval instar of the blowfly, Calliphora erythrocephala, has been investigated. In salivary glands, protein release, protein synthesis, amylase, and pepsin-like protease activity were maximal in 6 day larvae, this being at a time when the larvae had finished feeding. All these functions declined in glands from the rounded-off white puparial stage (R.O.) while acid phosphatase activity rose throughout the third instar to a maximum at the R.O. stage, Glands from 6 and 7 day larvae released protein which on disk gel electrophoresis separated into four minor bands and two major bands one of the latter possessing protease activity.In the gut, pepsin-like protease activity was maximal in 4 day larvae after which it fell rapidly thus following the feeding pattern of the larva in contrast to that in the salivary glands which did not.In vitro experiments showed that protease was released from 6 day glands through the basal membrane of the cells and not via the duct. A pepsin-like protease was also found in the haemolymph and fat body, the activity in the fat body rising rapidly during the latter part of the third instar, a rise which is attributed to the fat body sequestering protease from the haemolymph. Acid phosphatase activity in the fat body was maximal in 5 day larvae indicating that this enzyme was synthesized early in the third instar. It was shown that fat body sequestered 14C-labelled protein synthesized by and released from the salivary glands, most of the 14C activity being associated with a 600 g precipitable, acid-phosphatase rich fraction.It is proposed that in late third instar larvae the salivary glands function as glands of internal secretion, releasing protease into the haemolymph, which is then sequestered by the fat body (and perhaps other tissues) and is subsequently used in the lysis of the tissues at the time of metamorphosis.  相似文献   

4.
Summary Transplantation of fragments of the anterior fat body lobe of 4 day old feeding stage larvae into one day older hosts, which are at the end of feeding, leads to precocious induction of ultrastructural changes in the transplanted cells of the fat body. These changes include alterations in the mean relative and absolute areas of mitochondria, protein granules, lipid droplets and vacuoles. The extent of intracellular changes induced in the transplants depends on the physiological condition of the host. This confirms that alterations in the internal environment at termination of feeding induce premetamorphic changes in cells of the fat body.  相似文献   

5.
At the end of the larval feeding stage of Calliphora erythrocephala, ecdysteroids are most likely to be responsible for the rapid increase in acid phosphatase activity in the fat body. This is demonstrated by the precocious induction of the enzyme by 20-hydroxyecdysone in ligatured feeding-stage larvae weighing 55–70 mg. The hormone does not influence normal protein accumulation: this is inhibited by the ligature and is not restored by injection of the hormone.  相似文献   

6.
Sorbitol 6-phosphate (S6P) is one of two major sugars (another is trehalose) in the larval hemolymph of Bombyx mori, and its amount dramatically decreases concomitantly with the onset of prepupal period. In the last (fifth) instar larvae, the amount of S6P is approximately 30 micromol/larva at its maximum and decreases to less than 1 micromol at the wandering stage. Incubation of fat bodies of wandering larvae with S6P generates sorbitol in the medium, while S6P in the medium decreases, indicating that fat body possesses sorbitol 6-phosphatase (S6Pase) activity. S6Pase activity in the fat body remains low during the feeding period, abruptly increases at the wandering and decreases to a low level after gut purge. 20-Hydroxyecdysone (20E) increases S6Pase activity in the fat body of feeding larvae, and the activation is dose-dependent. Cell fractionation studies show that S6Pase is mainly associated with the membrane and the optimal pH for membrane-bound S6Pase is 5.5, which is different from that for soluble acid phosphatase (pH 4). Present findings indicate that the S6Pase responsible for a decrease in hemolymph S6P is membrane-bound, and its activity is controlled by a rise of hemolymph ecdysteroid titer at the onset of the wandering stage.  相似文献   

7.
Data on the hormonal regulation of the formation and mobilisation of fat body stores are presented and discussed in relation to general parameters of last instar larval development such as growth, food intake, and moulting. Crickets feed voraciously during the first half of the last larval stage. With the onset of feeding, fat body lipid synthesis increases, leading to increasing lipid stores in the fat body with a maximum reached on day 5. Lipid (42% of fat body fresh mass) is the main constituent of the fat body stores, followed by protein (6%) and glycogen (2%). During the second half of the last larval stage, feeding activity dramatically decreases, the glycogen reserves are depleted but lipid and protein reserves in the fat body remain at a high level except for the last day of the last larval stage when lipid and protein in the fat body are also largely depleted. The process of moulting consumes almost three quarters of the caloric equivalents that were acquired during the last larval stage. Adipokinetic hormone (AKH) inhibits effectively the synthesis of lipids in the larval fat body. Furthermore, AKH stimulates lipid mobilisation by activating fat body triacylglycerol lipase (TGL) in last larval and adult crickets. Both effects of AKH are weaker in larvae than in adults. This is the first report on the age-dependent basal activity of TGL in larval and adult insects. In addition, for the first time, an activation of TGL by AKH in a larval insect is shown.  相似文献   

8.
Expression of hemolin, which generates an immune protein, was up-regulated in wandering fifth instar larval stage of Plodia interpunctella. The mRNA level peaked in the middle of the wandering stage. Major expression was in the epidermis, rather than in the fat body or gut. To test a possible ecdysteroid effect on hemolin induction we treated with RH-5992, an ecdysteroid agonist, and KK-42, which inhibits ecdysteroid biosynthesis in both feeding and wandering fifth instar larvae. When feeding larvae were treated with RH-5992 the hemolin mRNA level was increased. When wandering larvae were treated with KK-42 its level was reduced. In addition, when KK-42-treated larvae were subsequently treated with RH-5992 the hemolin mRNA level was recovered. These results strongly suggest that ecdysteroid up-regulates the expression of hemolin mRNA. Hormonal and bacterial effects on hemolin induction were further analyzed at the tissue level. Major induction of hemolin mRNA was detected following both RH-5992 treatment and bacterial injection in the epidermis of both feeding and wandering larvae. Minor induction of hemolin was detected in the fat body following a bacterial injection, but not RH-5992 treatment. We infer that in P. interpunctella larvae, the epidermis is the major tissue for hemolin induction in na?ve insects and in insects manipulated with bacterial and hormonal treatments.  相似文献   

9.
Starvation, in particular amino acid deprivation, induces autophagy in trophocytes (adipocytes), the major component of the fat body cell types, in the larvae of Drosophila melanogaster. However, the fat body of cockroach has two additional cell types: urocytes depositing uric acid in urate vacuoles as a nitrogen resource and mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, which can synthesize amino acids from the metabolites of the stored uric acid. These cells might complement the roles of autophagy in recycling amino acids in the fat body or other organs of cockroaches under starvation. We investigate the presence of autophagy in tissues such as the fat body and midgut of the American cockroach, Periplaneta americana, under starvation by immunoblotting with antibody against Atg8, a ubiquitin-like protein required for the formation of autophagosomes and by electron microscopy. Corresponding changes in acid phosphatase activity were also investigated as representing lysosome activity. Starvation increased the level of an autophagic marker, Atg8-II, in both the tissues, extensively stimulating the formation of autophagic compartments in trophocytes of the fat body and columnar cells of the midgut for over 2 weeks. Acid phosphatase showed no significant increase in the fat body of the starved cockroaches but was higher in the midgut of the continuously fed animals. Thus, a distinct autophagic mechanism operates in these tissues under starvation of 2 weeks and longer. The late induction of autophagy implies exhaustion of the stored uric acid in the fat body. High activity of acid phosphatase in the midgut of the fed cockroaches might represent enhanced assimilation and not an autophagy-related function.  相似文献   

10.
Levels of uric acid in the whole body of the tobacco hornworm, Manduca sexta increased steadily for the 9 days of the fifth instar. However, concentrations in the haemolymph were lowest during the transition from the feeding stage to the wandering stage (days 3, 4), the time when there was a switch from uric acid excretion by the Malpighian tubule-hindgut system to storage in the fat body. Haemolymph volumes, determined for larvae between 2 and 6 days into the fifth instar by isotope dilution with [14C]-inulin, were used to calculate rates of incorporation of uric acid into Malpighian tubules and fat body of larvae injected with [14C]-uric acid. These labelling studies indicated that the Malpighian tubules ceased to remove uric acid from the haemolymph some time between the last 6 hr of day 3 of the fifth instar and the first 18 hr of day 4. At the same period, fat body removed significant quantities of uric acid from the haemolymph. The times of initial decreases and increases in levels of uric acid in haemolymph and fat body, respectively, indicated that storage in the fat body started before cessation of elimination via the Malpighian tubule-hindgut system.  相似文献   

11.
12.
Larvae of holometabolous insects must determine the timing of their metamorphosis. How they determine this timing has only been studied in detail for a few insect species. In a few species of Coleoptera, starvation is known to be a cue for metamorphosis, leading to the formation of smaller adults (starvation-induced pupation, SiP). We investigated the occurrence of SiP in the beetle Psacothea hilaris. When P. hilaris larvae were starved late in the feeding phase of the last (5th) instar, they exhibited typical SiP characterized by constancy of the time from food deprivation to pupation (TTP) irrespective of the body weight upon food deprivation or the length of prior feeding. In contrast, when larvae were starved early in the feeding phase, TTP decreased by roughly 1 day as the feeding became 1 day longer. The change in the response to starvation was estimated to occur on day 5.9 in the last instar. A series of refeeding experiments suggested that whereas SiP occurred readily in the larvae starved in the late feeding phase, activation of SiP was suspended until day 5.9 in the larvae starved early in the feeding phase. When P. hilaris larvae were fed continuously, they eventually ceased feeding spontaneously and pupated. The time length between spontaneous cessation of feeding and pupation was approximately equal to the TTP in SiP. This suggests that the same mechanism was activated by food deprivation in the late feeding phase and by spontaneous cessation of ad libitum feeding.  相似文献   

13.
14.
Biochemical evidence was obtained for an increase in acid phosphatase activity in the larval fat body of Calliphora erythrocephala during larval and pharate pupal instars. This observation is in conflict with published data indicating a decreasing enzyme activity in late third stage larvae. Centrifugation and filtration studies showed that the pH of the homogenisation medium has a strong influence on the solubilisation of acid phosphatase and its distribution in homogenate components. Differences in biochemical techniques including the pH value may explain the discrepancy between the published results and the present findings.The observed increase in acid phosphatase activity is related to the activity of the lysosomal system in the period immediately preceding pupal-adult apolysis.  相似文献   

15.
The distribution of digestive enzymes was studied using histoenzymological methods in yellowtail and winter flounder larvae reared on three different diets: live food, weaned at day 15, or starved. Alkaline phosphatase, dipeptidyl peptidase IV, aminopeptidase M and esterase were present at 3 days post-hatch and became differentially distributed coinciding with morphological development. For larvae fed a live diet, activity of these enzymes was present in the intestine of both species and rectum of yellowtail flounder. Alkaline phosphatase was also present in the post-oesophageal swelling (stomach anlage) of winter flounder. Activity of all enzymes was absent in starved winter flounder larvae and a decrease in aminopeptidase M and esterase activity occurred in starved yellowtail flounder larvae. Acid phosphatase was not identified in either species. The eVect of weaning on enzymatic activity was not evaluated fully as the larvae did not survive long enough after the introduction of the artificial diet to complete experimentation.  相似文献   

16.
The effect of starvation on carbohydrate metabolism in the last instar larvae of the silkworm Bombyx mori was examined. Trehalose concentration in the hemolymph increased slightly during the first 6 h of starvation and decreased thereafter, whereas glucose concentration decreased rapidly immediately after diet deprivation. Starvation-induced hypertrehalosemia was completely inhibited by neck ligation, suggesting that starvation stimulates the release of a hypertrehalosemic factor(s) from the head. The percentage of active glycogen phosphorylase in the fat body increased within 3 h of starvation and its glycogen content decreased gradually. These observations suggest that production of trehalose from glycogen is enhanced in starved larvae. However, hypertrehalosemia during starvation cannot be explained by the increased supply of trehalose into hemolymph alone, as similar changes in phosphorylase activity and glycogen content in the fat body were observed in neck-ligated larvae, in which hemolymph trehalose concentration did not increase but decreased gradually. When injected into larvae, trehalose disappeared from hemolymph at a rate about 40% lower in starved larvae than neck-ligated larvae. The hemolymph lipid concentration increased during starvation, suggesting that an increased supply of lipids to tissues suppresses the consumption of hemolymph trehalose and this is an important factor in hypertrehalosemia.  相似文献   

17.
The activity of nonspecific esterases and glutathione-S-transferase in whole body homogenates, hemolymph plasma, and fat body of the larvae of the locust Locusta migratoria was analyzed during development of infection with the fungus Metarhizium anisopliae. The lethal dose of the fungus (LC80) was found to enhance the activity of detoxifying enzymes in the whole body homogenate of the larvae on the 3rd day after infection. The activity of nonspecific esterases and glutathione-S-transferase in the plasma and fat body of the infected larvae increased on the 3rd day but dropped to the control levels by the 6th day, during the acute period of infection. The detoxifying enzymes may participate in defense reactions at the early stage of the acute fungal infection.  相似文献   

18.
【目的】旨在明确黑水虻Hermetia illucens幼虫的耐饥力及饥饿幼虫复食后的发育、生殖力等生物学特性,为评估饥饿对黑水虻后续发育的影响并指导生产实践提供依据。【方法】将不同日龄或不同体重黑水虻幼虫进行不同时长的饥饿处理,测定和分析其耐饥力与日龄、百头重的关系;对7日龄幼虫进行不同时长的饥饿处理后再复喂,测定不同饥饿时长对其预蛹出现时间、总预蛹率、预蛹重、成虫繁殖等的影响。【结果】黑水虻幼虫饥饿后的半数致死时间(LT50)与日龄成指数关系,与体重呈线性相关。7日龄幼虫的耐饥力较强,LT50超过了50 d,饥饿30 d时存活率仍然达到了95%。百头重小于0.5 g的个体,其LT50小于30 d;百头重在2~2.5 g的个体,其LT50在45~70 d。幼虫超过8日龄时或百头重超过4.5 g时,多数个体在饥饿5 d时就提前进入了后续发育阶段。7日龄幼虫饥饿40 d内复食,其预蛹率未受到影响,但预蛹重显著增加;短期饥饿(0~10 d)对其成虫产卵量无显著影响,长期饥饿(30~40 d)使其成虫产卵量显著下降;饥饿长达30 d以上时,卵孵化率也显著降低。【结论】本研究明确了不同体重或不同日龄的黑水虻幼虫都具有一定的耐饥力;饥饿幼虫复食后预蛹重显著增加。  相似文献   

19.
Changes in the specific and total activity of the lysosomal marker enzyme acid phosphatase (Acph) and in the amount of enzyme protein were examined in the fat body and the hemolymph from the last larval molt to the larval-pupal apolysis. The specific activity showed minor changes during the last larval period. In contrast, the total activity of the enzyme was low during the feeding period and higher during the wandering stage and strikingly increased at the time of puparium formation. We purified a protein having para-nitrophenyl phosphate phosphatase (Acph) activity and raised antisera against it. The amount of Acph protein in the fat body and hemolymph was examined using an ELISA. The specific Acph content showed little variation, but the total amount of the enzyme protein showed a stepwise increase in both organs during last larval stage and was markedly elevated in the pupal stage in the fat body. In contrast, a considerable decrease in the amount of Acph protein was observed in the hemolymph during this period. These data were in agreement with immunohistochemical observations showing an accumulation of the enzyme protein in fat body cells during the prepupal stage with a concomitant disappearance of the enzyme from the hemolymph. Inhibition of ecdysteroid secretion by water stress prevented the changes both in total enzyme activity and in the amount of Acph protein. However, Acph protein content and enzyme activity could be restored when the water stress was followed by a 20-hydroxyecdysone (20-HE) treatment. Taken together, our data show that Acph is secreted by fat body cells into the hemolymph during the larval stage, where it is stored in an inactive form. Increase in the 20-HE titer at the end of last larval stage reverses this process, and the enzyme is taken up by the fat body cells, where it becomes activated and appears in auto- and heterophagic vacuoles. Arch. Insect Biochem. Physiol. 34:369–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Summary Changes in the ultrastructure, and distribution of phosphatases in the intestinal epithelium of Rana temporaria during development were consistent with other developmental changes. Alkaline phosphatase AMP-ase and ATP-ase were always associated with sites of absorption of foodstuffs into the cell. Initially, these were only the yolk platelets but at the onset of feeding the brush border lateral wall, membranes and associated absorption vesicles all became sites of activity. At metamorphosis when the larvae cease feeding, the enzyme activities decreased and became difficult to detect.In the early larval stages, acid phosphatase activity was confined principally to the lateral cell-wall membranes. This soon disappeared but was followed at metamorphosis by a dramatic increase in both the number of sites and their activity. In general, acid phosphatase appeared to be associated with areas of degeneration. The new epithelial cells which developed during metamorphosis appeared under the old epithelium. The cell debris from the larval epithelium was then expelled into the lumen of the intestine. The new epithelium contained sites of enzyme activity similar to those of the adult. Acid phosphatase was now present only in lysosome-like bodies and very sparsely on the brush border.These results are discussed in relation to dietary and structural changes. It is suggested that the presence of the enzymes at any site can be related to and anticipate these changes, possibly under hormonal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号