首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial variance in the distribution of aquatic mobile organisms differs from that of passive tracers such as phytoplankton or water temperature. On average, spatial variance of phytoplankton scales with sample unit as $L^2$ or equivalently with frequency as $f^{-2}$. Limited evidence suggests that spatial variance in the distribution of mobile organisms is concentrated at relatively small scales, with little increase over larger scales: spatial variance scales as $f^{-1}$ or less. We investigated whether spatial variance in distributions of a mobile predator, Atlantic cod (Gadus morhua), and a schooling prey, capelin (Mallotus villosus), also scale with frequency as $f^{-1}$. Acoustic surveys showed that at short time scales spatial variance in cod and capelin densities, as measured by spectral density, peaked at various scales ranging from 20 m to 10 km. At longer time scales, spatial variance of cod scaled as $f^{-1.08}$ at resolutions finer than 90 m, while scaling as $f^{-0.18}$ at coarser scales. Spatial variance of capelin scaled as $f^{-1.1}$ at resolutions finer than 400 m, while scaling as $f^{-0.21}$ at coarser scales. Spatial variance plots of krill and marine birds showed similar transitions from shallow to steep scaling. Shoaling, schooling and the aggregative response by predators to concentrations of prey were three processes hypothesized to influence spatial variance in distributions of mobile organisms. Numerical experiments showed that shoaling injects variance at large to intermediate scales, resulting in scalings flatter than $f^{-1}$. Additional experiments showed that schooling produces a transition from shallow to steep scaling as frequency increases. Spatial variance patterns in cod density were not due to aggregative responses by the predator to concentrations of capelin: there was no association, on average, at resolution scales from 20 m to 10 km. Exponent values for aquatic or terrestrial mobile organisms are predicted to be approximately two at the scale of an individual organism, 0.2 at scales that contain aggregations, and two at scales larger than that of populations. These findings suggest that relations between mobile organisms and large scale habitat variables will be difficult to detect, that stratified survey designs used to estimate commercial population sizes will be inefficient, and that rates of interaction between predator and prey will be underestimated if local observations are averaged over the spatial scale of the population.  相似文献   

2.
We tested two biologically based predictions that potentially influence scales of spatial association between Atlantic cod, Gadus morhua , and prey populations of capelin, Mallotus vilhsus . If cod aggregate in response to concentrations of prey, then spatial association (coherence) between capelin and cod was predicted to peak at the scale of maximum capelin spatial variance. If capelin-cod coherence did not match the scale of maximum prey spatial variability, then capelin-cod coherence was predicted to peak at the spatial scale that maximizes net energetic benefit to the predator. Contrary to predictions, we found no evidence of aggregative responses of cod to capelin over resolution scales of 20 m to 10 km. This result was observed consistently at the temporal scale of a single transect ( c . 1 h duration) and at the scale of averaged transects ( c . 2 weeks duration). Estimates of cod foraging energetics showed that they were not constrained by physiology to aggregate relative to capelin at any scale less than 10 km. A net energetic gain of 478 to 784 kJ would result if a 44 cm, 752 g cod consumed a ration of eight to 12 capelin over a period of 58 h. Energetic calculations included costs of egestion and excretion (317 to 476 kJ), maintenance (58 kJ), digestion (125 to 188 kJ), and continuous swimming during ration assimilation (79 kJ). During this period, a 44 cm cod could travel over 38 km swimming at 1 b.l. s−1. Foraging cod are virtually certain to encounter capelin over this distance based on the abundance of pre-spawning capelin present in coastal bays during the spawning season. This study illustrates that aggregative responses of predators do no occur at all scales and possibly occur over a very limited range of scales.  相似文献   

3.
We study the cumulative effect of successive predator attacks on the disturbance of a prey aggregation using a modelling approach. Our model intends to represent fish schools attacked by both aerial and underwater predators. This individual-based model uses long-distance attraction and short-distance repulsion between prey, which leads to prey aggregation and swarming in the absence of predators. When intermediate-distance alignment is added to the model, the prey aggregation displays a cohesive displacement, i.e., schooling, instead of swarming. Including predators, i.e. with repulsion behaviour for prey to predators in the model, leads to flash expansion of the prey aggregation after a predator attack. When several predators attack successively, the prey aggregation dynamics is a succession of expanding-grouping-swarming/schooling phases. We quantify this dynamics by recording the changes in the simulated prey aggregation radius over time. This radius is computed as the longest distance of individual prey to the aggregation centroid, and it is assumed to increase along with prey disturbance. The prey aggregation radius generally increases during flash expansion, then decreases during grouping until reaching a constant lowest level during swarming/schooling. This general dynamics is modulated by several parameters: the frequency, direction (vertical vs. horizontal) and target (centroid of the prey aggregation vs. random prey) of predator attacks; the distance at which prey detect predators; the number of prey and predators. Our results suggest that both aerial and underwater predators are more efficient at disturbing fish schools by increasing their attack frequency at such level that the fish cannot return to swarming/schooling. We find that a mix between aerial and underwater predators is more efficient at disturbing a fish school than a single type of attack, suggesting that aerial and underwater foragers may gain mutual benefits in forming foraging groups.  相似文献   

4.
During 11 March to 4 April 2002, the distribution of Barents Sea capelin Mallotus villosus along the coast of Finnmark, northern Norway, was covered four times by combining acoustic survey with trawling, synoptically and simultaneously sampling capelin and its main fish predators; cod Gadus morhua, haddock Melanogrammus aeglefinus and saithe Pollachius virens. The surveys demonstrated how these gadoid predators were able to exploit such a short‐term abundance of forage fish. The predator aggregation as well as the stomach fullness and proportion of capelin in their diet followed the capelin spawning migration, increasing in areas and periods with increasing capelin abundance. Capelin clearly constituted most of the biomass in stomachs of cod (97%), haddock (87%) and saithe (96%). The stomach fullness was highest in cod and lowest in haddock, although in areas with low capelin abundance, saithe had more capelin in their stomachs. The total length (LT) of capelin in predator stomachs increased with predator LT, but the proportion of capelin in the diet was not influenced by predator LT. The capelin in predator stomachs was significantly smaller than capelin in the trawl hauls, also when compared within the same sex, indicating feeding selectivity towards weaker individuals. Female capelin, being significantly smaller than the males, predominated in the diet of haddock, whereas in cod and saithe the sex ratio was more equal. Male capelin predominated in the predator diet during the pre‐spawning period, whereas the females predominated as the spawning commenced. During the overall study period, most of the female capelin in predator stomachs was in a pre‐spawning or a spawning stage, whereas the majority of the males appeared to be spent. Regardless of sex, the percentage of spent, relative to pre‐spawning or spawning capelin in the diet of the predators, followed the capelin spawning dynamics, increasing with time as the spawning progressed.  相似文献   

5.
We use data on pigeon guillemots Cepphus columba to test the hypothesis that discretionary time in breeding seabirds is correlated with variance in prey abundance. We measured the amount of time that guillemots spent at the colony before delivering fish to chicks ("resting time") in relation to fish abundance as measured by beach seines and bottom trawls. Radio telemetry showed that resting time was inversely correlated with time spent diving for fish during foraging trips (r=−0.95). Pigeon guillemots fed their chicks either Pacific sand lance Ammodytes hexapterus , a schooling midwater fish, which exhibited high interannual variance in abundance (CV=181%), or a variety of non-schooling demersal fishes, which were less variable in abundance (average CV=111%). Average resting times were 46% higher at colonies where schooling prey dominated the diet. Individuals at these colonies reduced resting times 32% during years of low food abundance, but did not reduce meal delivery rates. In contrast, individuals feeding on non-schooling fishes did not reduce resting times during low food years, but did reduce meal delivery rates by 27%. Interannual variance in resting times was greater for the schooling group than for the non-schooling group. We conclude from these differences that time allocation in pigeon guillemots is more flexible when variable schooling prey dominate diets. Resting times were also 27% lower for individuals feeding two-chick rather than one-chick broods. The combined effects of diet and brood size on adult time budgets may help to explain higher rates of brood reduction for pigeon guillemot chicks fed non-schooling fishes.  相似文献   

6.
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large‐scale forcing controls decadal‐scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin‐scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large‐scale forcing. Moreover, we show that a long‐term increase in coastal upwelling translates via a bottom‐up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS.  相似文献   

7.
A massive beaching and mortality of fishes occurred in Coliumo Bay, a shallow bay located along the coast of the eastern South Pacific Ocean on 3 January 2008. This stranding was a consequence of an abrupt decrease in the dissolved oxygen concentration throughout the whole water column, due to the effect of intense upwelling along the coast off central‐southern Chile. The main objectives of this study were: (1) to characterize taxonomically and biologically the fish species assemblage present in this beaching; (2) to evaluate several physiological indicators for the condition of the beached species at the time of their death; and (3) to assess the possible cause–effect mechanisms involved in the fishes death and the changes that took place in the fish community throughout the time. In this beaching, 26 fish species were identified: 23 teleosts, one myxiniform and two elasmobranchs. Most beached specimens were juveniles. Haematological and histological evidence indicate that severe hypoxia that lasted for at least 48 h was the most plausible cause of death. The main conclusion of this study is that the presence of oxygen‐poor equatorial sub‐surface water in the shallow coastal zone due to intense regional‐scale upwelling caused the fish stranding. Although the effect of the hypoxic event was severe for the fish assemblage of Coliumo Bay, the rapid recuperation observed suggests that hypoxic events at the local spatial scale can be buffered by migration processes from the fish community inhabiting close by areas non‐affected by low oxygen conditions. The effect that severe hypoxic events may have on larger spatial scales remains unknown.  相似文献   

8.
The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world''s largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.  相似文献   

9.
We tested three hypotheses concerning the timing of spawning for a circumpolar species, capelin (Mallotus villosus), for which timing of larval emergence is known to be synchronized by physical conditions. The first hypothesis, developed from previous studies, was that spawning would be synchronized by upwelling events. Initial results from Middle Cove Beach in eastern Newfoundland indicated that spawning was not synchronized with upwelling. We next hypothesized that spawning was a function of several environmental variables. Results from logistic regression indicated that neither single-factor nor multi-factor models could explain the timing of spawning. Single variables could predict spawning in some years but no variable could reliably predict the time of spawning year after year. Finally, we hypothesized that the probability of spawning increased as a set of significant variables approached preferred levels. For capelin at Middle Cove, the set of variables that influence capelin spawning were identified as wave height, sea surface roughness and capelin abundance in the water. Thus only a combination of variables explained the timing of spawning for capelin. Preferred conditions for capelin spawning were wave heights less than 20 cm at the beach, a sea surface with a slight ripple, and an intermediate rank abundance of capelin in the water corresponding to hundreds to thousands of individuals. Capelin abundance alone was not a useful predictor. During the course of the study we observed a shift in the dates that capelin arrived and spawned at the beach. During 1987–1990 capelin spawned at Middle Cove Beach during June, but in more recent years (1991–1993) capelin did not arrive or spawn until July.  相似文献   

10.
Summary I describe the winter diets (early March) of four seabird species, black-legged kittiwake (Rissa tridactyla), northern fulmar (Fulmarus glacialis), glaucous gull (Larus hyperboreus) and Brüinnich's guillemot (Uria lomvia) collected in the south eastern Barents Sea, in open water approximately 70 km from the ice edge. All species preyed heavily on commercial fish species such as cod (Gadus morrhua), polar cod (Boreogadus saida) and redfish (Sebastes marinus/S. mentella). The median total length of fish eaten ranged from 51 mm in fulmars to 88 mm in Brünnich's guillemots and differed significantly among all species pairs except kittiwake and glaucous gull. Although the size of fish eaten differed among the four bird species they all fed upon much the same age categories of fish. Cod and redfish eaten were almost exclusively one year old, whereas polar cod was 1–4 years old. Other important food items were crustaceans (B unnich's guillemots), and squid Gonatus sp. (fulmars); the glaucous gull also preyed on other birds. Body weights and amounts of stored fat suggest that individuals of all species except Brüinnich's guillemots were in good physical condition. The diets described here differed substantially from those of birds caught mainly during the prelaying season near the colonies in this area. Some of these differences may be attributed to the very low density of capelin (Mallotus villosus) when this study was conducted.  相似文献   

11.
Hypoxia and the antipredator behaviours of fishes   总被引:2,自引:0,他引:2  
Hypoxia is a phenomenon occurring in marine coastal areas with increasing frequency. While hypoxia has been documented to affect fish activity and metabolism, recent evidence shows that hypoxia can also have a detrimental effect on various antipredator behaviours. Here, we review such evidence with a focus on the effect of hypoxia on fish escape responses, its modulation by aquatic surface respiration (ASR) and schooling behaviour. The main effect of hypoxia on escape behaviour was found in responsiveness and directionality. Locomotor performance in escapes was expected to be relatively independent of hypoxia, since escape responses are fuelled anaerobically. However, hypoxia decreased locomotor performance in some species (Mugilidae) although only in the absence of ASR in severe hypoxia. ASR allows fish to show higher escape performance than fish staying in the water column where hypoxia occurs. This situation provides a trade-off whereby fish may perform ASR in order to avoid the detrimental effects of hypoxia, although they would be subjected to higher exposure to aerial predation. As a result of this trade-off, fishes appear to minimize surfacing behaviour in the presence of aerial predators and to surface near shelters, where possible. For many fish species, schooling can be an effective antipredator behaviour. Severe hypoxia may lead to the disruption of the school unit. At moderate levels, hypoxia can increase school volume and can change the shuffling behaviour of individuals. By altering school structure and dynamics, hypoxia may affect the well functioning of schooling in terms of synchronization and execution of antipredator manoeuvres. School structure and volume appear to be the results of numerous trade-offs, where school shape may be dictated by the presence of predators, the need for energy saving via hydrodynamic advantages and oxygen level. The effects of hypoxia on aquatic organisms can be taxon specific. While hypoxia may not necessarily increase the vulnerability of fish subject to predation by other fish (since feeding in fish also decreases in hypoxia), predators from other taxa such as birds, jellyfish or aquatic mammals may take advantage of the detrimental effects of hypoxia on fish escape ability. Therefore, the effect of hypoxia on fish antipredator behaviours may have major consequences for the composition of aquatic communities.  相似文献   

12.
Stomach contents from lesser sandeel Ammodytes marinus and herring Clupea harengus caught at one and three stations, respectively, were analysed to investigate predation intensity on capelin Mallotus villosus larvae. Most capelin larvae were found in the anterior sections of the stomachs close to the oesophagus, indicating that rapid digestion rates of larvae reduced the abundance in the posterior sections. The anterior sections of the stomachs had alternating layers of either copepods or capelin larvae and krill. This shows that the individual predators switched between feeding on either copepods or on krill and capelin larvae. A total of 549 capelin larvae was found in 440 fish stomachs. Capelin larvae were found in 20% of the sandeel stomachs, and 24, 34 and 62% of the stomachs from the three herring stations, respectively. Many of the predator stomachs contained more than five larvae, and up to 28 larvae were found in one herring stomach. The herring appeared to prey selectively on the largest capelin larvae, and the number of larvae per stomach was much higher in stomachs where krill had recently been eaten than where copepods were dominant. The predation intensity measured in this study is much higher than reported in earlier studies, and it is suggested that the predators were feeding using a searching image, and that the concentrations of alternative prey (copepods and krill) varied around a switching threshold.  相似文献   

13.
By the late 1980's, humans were removing 76 million metric tons (MMT) of marine fishes annually. The potential sustainable catch is somewhere between 69 and 96 MMT. As a result, major fisheries have collapsed or are in danger of collapsing. Many of these species school. Schooling is effective against gape-limited predators because of dilution and confusion. However, larger predators may exploit schooling behavior to sequester and consume a non-trivial fraction of the group. This is the strategy of fishers. Both gear and fisher behavior have evolved to take advantage of the seemingly canalized response of schooling species. This paper examines the ways artisanal and western fishers have exploited knowledge of the behavior and ecology of schooling species to aid in fish capture. Topics include object association; use of light, sound, and chemicals; perceived barriers; predator-prey and other trophic interactions; inherent cyclical rhythms such as diel migration, lunar spawning, and seasonality; and correlations with the physical environment. Exploiting schooling allows fishers to increase efficiency through knowledge of when and where fish aggregate, or by extending the conditions under which aggregation occurs. However, knowledge of behavioral ecology can also be used to conserve schooling stocks. Gear selectivity, group size and population dynamics, and fisher efficiency are all potential areas of integration between behavioral ecology and fishery management. However, no amount of integration of behavioral ecology into fishery management will have the intended conservation effects if fishing effort is not limited to at least numerical if not behaviorally-sustainable levels.  相似文献   

14.
Understanding aggregation dynamics of forage species is important for evaluating biophysical scaling in marine ecosystems and heterogeneity of trophic interactions. In particular, zooplankton aggregations are fundamental units of many pelagic systems, but are difficult to observe continuously through space and time. Using an established modeling framework that encompasses a coupled regional oceanographic and individual‐based modeling system, we test the hypothesis that persistence (duration) of krill aggregations is dependent on their size, intensity, and location of formation within the coastal upwelling region of the California Current. In support of this hypothesis, we found that aggregation size is positively related to intensity, whereas persistence has a parabolic response to aggregation size and intensity, indicating the likelihood that large and highly persistent aggregations are rare. Persistence of krill aggregations also depends on formation location within coastal upwelling areas. We found that krill aggregations were more likely to form near a major seabird colony and that some coastal upwelling areas act as sources of aggregations for other areas. Observations of seabird aggregations were used to evaluate the potential structural realism of predicted krill aggregations. Seabird aggregations displayed marked coherence with predicted krill aggregations in space, providing important criteria on the scaling and availability of krill aggregations to breeding and migratory species. Predicting scales of krill aggregation dynamics will benefit ecosystem assessments, and numerical modeling of predator foraging and marine spatial management aimed at ensuring protection of ecologically important areas.  相似文献   

15.
The early developmental stages of capelin Mallotus villosus and lesser sandeel Ammodytes marinus were the major representatives of the fish larvae in the ichthyoplankton of the open waters of the White Sea in June 2007 and 2010 and in July 2010 and 2011. The larvae of these two species were widely distributed in the White Sea and have been registered in the large bays and in the other parts of the sea. The larvae of capelin and lesser sandeel were the most abundant in Onega Bay and in Dvina Bay and in Gorlo Strait of the White Sea; the larvae of lesser sandeel have also been found in the coastal waters of Kandalaksha Bay. The schooling of the larvae of these two species were characterized by a relatively permanent localization that referred to the spawning grounds; the shape and the location of the schoolings usually depend on the presence and configuration of the areas of the pronounced gradients of the hydrophysical parameters in these areas.  相似文献   

16.
Climate warming affects biodiversity distribution across all ecosystems. However, beyond changes in species richness, impacts on other biodiversity components are still overlooked, particularly in the marine realm. Here we forecasted the potential effect of climate warming on the phylogenetic and functional components of coastal Mediterranean fish biodiversity. To do so, we used species distribution models to project the potential distribution of 230 coastal fish species by the end of the 21st century based on the IPCC A2 scenario implemented with the Mediterranean climatic model NEMOMED8. From these projections, we assessed the changes in phylogenetic (PD) and functional diversity (FD) of fish assemblages at multiple spatial scales using a dated molecular phylogeny and an extensive functional trait database. At the scale of the entire Mediterranean Sea, the projected extinctions of 40 coastal fish species would lead to a concomitant erosion of PD and FD (13.6 and 3%, respectively). However, a null model revealed that species loss at this scale would not lead to a disproportionate erosion of PD and FD. Similar results were found when considering fish assemblages at the grid cell scale. Indeed, at this scale, the projected changes in species richness would lead to unexpected losses of PD and FD for localized and small areas only. A disproportionate erosion of PD under climate warming was only forecasted when analysing fish assemblages at an intermediate spatial scale, namely the Mediterranean marine ecoregions. Overall, our results emphasize the importance of considering multiple spatial scales when assessing potential impacts of climate warming on the multiple components marine biodiversity.  相似文献   

17.
Coastal ocean upwelling ecosystems generally represent the most productive large marine ecosystems of the world's oceans, in terms of both primary production rates and tonnages of exploitable fish produced. The Peruvian upwelling system, in particular, stands out as a major factor in world fish production. The Pacific trade winds have traditionally been considered to be the primary driving force for the upwelling system off Peru, but are projected to weaken as climate change proceeds. This leads to concern that the upwelling process in the Peru system, to which its productivity is linked, may likewise weaken. However, other mechanisms involving greenhouse‐associated intensification of thermal low‐pressure cells over the coastal landmasses of upwelling regions suggest general intensification of wind‐driven ocean upwelling in coastal upwelling regions of the world's oceans. But although certain empirical results have supported this expectation, it has not been consistently corroborated in climate model simulations, possibly because the scale of the coastal intensification may be small relative to the scales that are appropriately reflected in the standard models. Here we summarize available evidence for the intensification mechanism and present a proxy test that uses variations in water vapor, the dominant natural greenhouse gas, to offer multiple‐realization empirical evidence for action of the proposed mechanism in the real world situation. While many potential consequences to the future of marine ecosystems would codepend on climate change‐related changes in the thermocline and nutricline structures, an important subset, involving potential increased propensities for hypoxia, noxious gas eruptions, toxic red tide blooms, and/or jellyfish outbreaks, may depend more directly on changes in the upwelling‐favorable wind itself. A prospective role of fisheries in either mitigating or reinforcing this particular class of effects is suggested.  相似文献   

18.
Is there safety‐in‐numbers for prey?   总被引:4,自引:0,他引:4  
Sean D. Connell 《Oikos》2000,88(3):527-532
The abundance of prey affects the rate of predation, but little consensus exists on whether this enhances or reduces per capita mortality. Studies of aggregating prey in marine habitats generally emphasise that the probability of predation of any individual is the reciprocal of the number of prey within a school. A field experiment tested the alternative hypotheses that predation by predatory fish on schooling prey (1) increased with an increase in the number of prey per school and that this caused (2) survival to be lower in schools with more individuals. The number of prey (juvenile Acanthochromis polyacanthus ) per school was manipulated in replicate treatments with natural densities of large predatory fish (open plots) and treatments without large predatory fish (exclusion cages). Large predatory fish preyed on juveniles in a density-dependent manner and this was the key source of density-dependent mortality in plots open to all predators. There was some suggestion that small predatory fish also prey on juveniles in a density-dependent manner, but this was weak and did not translate into density-dependent mortality of juveniles. It would appear that aggregation of prey may be a successful strategy against predation from some predators, but not always every predator, or all predators in combination.  相似文献   

19.
Two methods for estimating digestion rate were evaluated and the digestion rate to disappearance was estimated to be 0·30 h−1 for herring Clupea harengus feeding on capelin Mallotus villosus larvae. Due to high individual variability in feeding rates in schooling fish species, groups should be fed in separate tanks and stomach contents collected from each group at a predetermined time.  相似文献   

20.
Prey species often distribute themselves patchily in their habitats. In response to this spatial variation in prey density, some predator species aggregate in patches of higher prey density. This paper reviews a series of laboratory experiments to demonstrate the patterns of responses by phytoseiid predators (Phytoseiulus persimilis, Typhlodromus occidentalis and Amblyseius andersoni) to spatial variation in the density of their spider mite prey (Tetranychus urticae) and reveal the behavioural mechanisms underlying the observed patterns. In addition, patterns of aggregation were examined at a variety of spatial scales on plants in greenhouses. The patterns, mechanisms and spatial scale of aggregation in three predatory species are discussed in relation to their varying degrees of polyphagy. The results show that a specialist predator species (1) aggregates more strongly than generalist predators, (2) does so not because it finds prey patches of high density more easily but because it remains in these patches longer than generalist predators and (3) tends to aggregate more often at lower levels of spatial scale than generalist predators. It is suggested that these conclusions, based mainly on laboratory studies of a small sample of species, should be tested in the future on a wider selection of specialist and generalist species at different scales in the field. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号