首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The homeotic Antennapedia (Antp) gene of Drosophila is required for the normal differentiation of the thoracic segments during embryonic development and metamorphosis. Antibodies to a recombinant Antp protein were used to localize the protein in whole mount embryos. Antp is expressed in the nuclei of cells of the thoracic embryonic epidermis and several segments of the ventral and peripheral nervous systems. Analysis of Antp expression in mutant embryos revealed three levels of Antp regulation by genes of the bithorax complex, pleiotropic homeotic loci, and Antp itself. The distributions of the Antp and the Ultrabithorax (Ubx) proteins in doubly-labeled embryos suggest that the Ubx protein may be one direct negative regulator of Antp gene expression.  相似文献   

5.
Embryogenesis in individuals with mutations or deficiencies of the genes in the polytene interval 84A-84B1,2 of Drosophila melanogaster was examined using scanning electron microscopy (SEM). The developmental function of this region of chromosome 3 is of particular interest since it contains the Antennapedia Gene Complex (ANT-C), a gene cluster that includes the homoeotic proboscipedia (pb), Sex combs reduced (Scr), and Antennapedia (Antp) loci. The results of SEM studies, clonal analyses, and temperature-shift experiments show that the fushi tarazu (ftz) and zerknullt (zen) genes, which map between pb and Scr, are involved in processes initiated during embryogenesis. The activity of ftz+ appears to be required within the first 4 hr of development for the establishment of the proper number of segments in the embryonic germ band. Individuals with ftz mutations or deficiencies produce only half the normal number of segments. Each of the segments is twice the normal width and is apparently comprised of cells that would normally form two separate metameres. The zen allele is required from about 2-4 hr of embryogenesis. Mutations of this gene result in disturbances of morphogenetic movements during gastrulation. The mutant phenotype is characterized by the absence of the optic lobe, defects in involution of the head segments, and in some cases, failure of germ band elongation. A requirement during embryogenesis for the activities of other genes residing in the 84A-84B1,2 polytene interval is suggested by the phenotypes of individuals heterozygous or homozygous for chromosomal deficiencies. Using the deficiencies Df(3R)AntpNs+R17, Df(3R)Scr, and Df(3R)ScxW+RX2, we examined the effects of deleting the distal portions or all of the 84A-84B1,2 interval. The defects in deletion heterozygotes suggest that the wild-type activity of some gene(s) other than zen, within or just adjacent to the 84B1,2 doublet, is required to complete normal head involution. The deletion of all the loci in the 84A5-84B1,2 interval results in grossly abnormal morphology and morphogenesis of the gnathocephalic appendages of the embryo. From these studies we conclude that mutations and deficiencies of genes associated with the ANT-C have profound effects on embryogenesis. The mutant phenotypes suggest, in addition to ensuring proper segment identity, the wild-type alleles of the 84A-84B1,2 genes are necessary for normal segmentation and elongation of the germ band and normal head involution.  相似文献   

6.
The extraordinary positional conservation of the homeotic genes within the Antennapedia and the Bithorax Complexes (ANT-C and BX-C) in Drosophila melanogaster and the murine Hox and human HOX clusters of genes can be interpreted as a reflection of functional necessity. The homeotic gene proboscipedia (pb) resides within the ANT-C, and its sequence is related to that of Hox-1.5. We show that two independent pb minigene P-element insertion lines completely rescue the labial palp-to-first leg homeotic transformation caused by pb null mutations; thus, a homeotic gene of the ANT-C can properly carry out its homeotic function outside of the complex. Despite the complete rescue of the null, the minigene expresses pb protein in only a subset of pb's normal domains of expression. Therefore, the biological significance of the excluded expression pattern elements remains unclear except to note they appear unnecessary for specifying normal labial identity. Additionally, by using reporter gene constructs inserted into the Drosophila genome and by comparing pb-associated genomic sequences from two divergent species, we have located cis-acting regulatory elements required for pb expression in embryos and larvae.  相似文献   

7.
8.
9.
10.
11.
The homeodomain encoded by the Antennapedia (Antp) gene of Drosophila was overproduced in a T7 expression vector in Escherichia coli. The corresponding polypeptide of 68 amino acids was purified to homogeneity. The homeodomain was analysed by ultracentrifugation and assayed for DNA binding. The secondary structure of the isolated homeodomain was determined by nuclear magnetic resonance spectroscopy. DNA-binding studies indicate that the isolated homeodomain binds to DNA in vitro. It selectively binds to the same sites as a longer Antp polypeptide and a full-length fushi tarazu (ftz) protein. Therefore, the homeodomain represents the DNA-binding domain of the homeotic proteins.  相似文献   

12.
13.
14.
The decapentaplegic (dpp) gene product, a member of the transforming growth factor-beta family, is required in Drosophila embryos for normal gastrulation and the establishment of dorsal-ventral polarity in the embryo. dpp is also expressed at specific positions in the visceral mesoderm along the developing midgut. We find that mutations that eliminate the visceral mesoderm expression of dpp lead to defects in midgut morphogenesis and alter the spatially localized expression of the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Antennapedia (Antp) in the visceral mesoderm. The extracellular dpp protein migrates from the visceral mesoderm across the apposing endodermal cell layer in a region of the endoderm that expresses the homeotic gene labial (lab). Mesodermal expression of dpp is required for the expression of lab in these endodermal cells indicating that dpp mediates an inductive interaction between the two germ layers. We propose that extracellular dpp protein regulates gut morphogenesis, in part, by regulating homeotic gene expression in the visceral mesoderm and endoderm of the developing midgut.  相似文献   

15.
16.
Like other members of the Polycomb group, the extra sex combs gene (esc) is required for the correct repression of loci in the major homeotic gene complexes. We show here that embryos lacking both maternal and zygotic esc+ function display transient, general derepression of both the Ultrabithorax (Ubx) and Antennapedia (Antp) genes during germ band shortening, but Sex combs reduced (Scr) expression is almost normal in the epidermis and lacking in the central nervous system (CNS). In addition, embryos that are maternally esc- but receive two paternal copies of esc+ often are characterized by ectopic expression of the three homeotic genes, especially Ubx and Antp in the CNS. Imaginal discs from these paternally rescued embryos may show discrete patches of expression of Ubx and Scr in inappropriate locations. Thus, lack of esc+ function during a brief period in early embryogenesis results in a heritable change in determined state, even in a genetically wild type animal. Within these ectopic patches, homeotic gene expression may be regulated by the disc positional fields and by cross-regulatory interactions between homeotic genes.  相似文献   

17.
The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral mesoderm (Tremml, G. and Bienz, M. (1989), EMBO J. 8, 2677-2685). We report here the roles of homeotic genes in establishing the spatial patterns of sensory organs in the embryonic PNS. The PNS was examined in embryos homozygous for mutations in the homeotic genes Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) with antibodies that label specific subsets of sensory organs. Our results suggest that the homeotic genes have specific roles in establishing the correct spatial patterns of sensory organs in their normal domains of expression. In addition, we also report the effects of ectopic expression of the homeotic genes labial (lab), Deformed (Dfd), Scr, Antp or Ubx on the normal development of sensory organs in the embryonic PNS. Interestingly, while previous studies have concluded that ectopic expression of the homeotic genes Dfd, Scr and Antp has no effect on the segmental identity of the abdominal segments, our results demonstrate that this is not true. We show that ectopic expression of these genes does result in the disruption of the developing PNS in the abdomen. Our results are suggestive of a role for the homeotic gene products in regulating genes which are necessary for generating sensory progenitor cells in the developing PNS.  相似文献   

18.
Pairwise interaction of three alleles of Antennapedia (Antp49, Antp 50 and APX) with two alleles of Polycomb (Pc1 and Pc2) considerably increased homoeotic transformation of antennae caused by Antennapedia gene (up to the formation of completely developed homoeotic legs). On the contrary, Antennapedia alleles decreased the transformation of meso- and metatoracic legs into protoracic legs, as caused by Pc alleles. The degree of changes in the expression of Antp and Pc due to intergenic interaction were, as a rule, Antennapedia specific, i.e. the differences were greater when Antp alleles were substituted in genotypes. A possible mechanism of the interaction observed is discussed.  相似文献   

19.
Southworth JW  Kennison JA 《Genetics》2002,161(2):733-746
The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.  相似文献   

20.
 The homeotic gene teashirt (tsh) is known to regulate segmental identity of the trunk region of the Drosophila embryo. Here we report a requirement for tsh function in the development of adult head structures. Animals homozygous for a viable tsh allele or heterozygous for various embryonic recessive lethal alleles displayed miniaturized maxillary palps, a phenotype characteristically induced by dominant gain-of-function mutations of Antennapedia (Antp) homeotic gene. Animals transheterozygous for tsh and Antp mutations displayed an enhanced antenna-to-leg and a striking reduced-eye phenotype suggesting aggravated ANTP misexpression in eye-antennal discs of these animals. In agreement with this, in the developing eye-antennal discs of the tsh mutant animals a significant amount of ANTP protein was detected overlapping the domains where tsh is normally expressed. These results suggest that tsh specifies adult head segments by repressing Antp expression. Received: 7 December 1996 / Accepted: 8 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号