首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of a muscularised pharynx with skeletal support is a fundamental vertebrate characteristic. Developmentally, the pharynx arises from the pharyngeal arches on either side of the head of vertebrate embryos. The development of the pharyngeal arches is complex involving a number of disparate embryonic populations, ectoderm, endoderm, neural crest and mesoderm, which must be co-ordinated to generate the components and overall identity of each of the arches. Previous studies suggested that it is the neural crest that plays a pivotal role in patterning the pharyngeal arches. It is now also becoming clear, however, that there are crest-independent patterning mechanisms. Therefore, pharyngeal arch patterning is more complex than was previously believed and there must be an integration of crest-dependent and -independent patterning mechanisms. BioEssays 23:54-61, 2001.  相似文献   

2.
Barx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium.  相似文献   

3.
Retinoic acid (RA) signaling regulates multiple aspects of vertebrate embryonic development and tissue patterning, in part through the local availability of nuclear hormone receptors called retinoic acid receptors (RARs) and retinoid receptors (RXRs). RAR/RXR heterodimers transduce the RA signal, and loss-of-function studies in mice have demonstrated requirements for distinct receptor combinations at different stages of embryogenesis. However, the tissue-specific functions of each receptor and their individual contributions to RA signaling in vivo are only partially understood. Here we use morpholino oligonucleotides to deplete the four known zebrafish RARs (raraa, rarab, rarga, and rargb). We show that while all four are required for anterior-posterior patterning of rhombomeres in the hindbrain, there are unique requirements for rarga in the cranial mesoderm for hindbrain patterning, and rarab in lateral plate mesoderm for specification of the pectoral fins. In addition, the alpha subclass (raraa, rarab) is RA inducible, and of these only raraa expression is RA-dependent, suggesting that these receptors establish a region of particularly high RA signaling through positive-feedback. These studies reveal novel tissue-specific roles for RARs in controlling the competence and sensitivity of cells to respond to RA.  相似文献   

4.
Summary The existence of a neural crest cell migration pathway from occipital levels of the hindbrain into the heart was suspected in mammalian embryos because it had previously been identified in avian embryos and because the Di George anomaly, an association between craniofacial and cardiac malformations, is most easily explained on the basis of abnormal neural crest cell migration to all of the affected structures. In order to demonstrate the existence of this pathway, neural crest cells were labelled in situ in rat embryos with the fluorescent dye DiI, and the embryos cultured for up to 48 h. Cells labelled between occipital somites 1 and 2 or 3 and 4 migrated within and dorsal to the third and fourth pharyngeal arches and into the outflow tract of the heart (conus cordis and truncus arteriosus). The cardiac labelling was in individually visible cells, in contrast to the mass of fluorescence seen in the pharyngeal and dorsal mesenchyme. Within the outflow tract wall, the labelled cells were enmeshed by strands of alcian blue-stained extracellular matrix. There was no labelling of cardiac cells following injections just rostral to, or just caudal to, somites one and four. This study establishes the existence and precise levels of origin of the cardiac neural crest in a mammalian embryo.  相似文献   

5.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

6.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

7.
The Dlx genes play an important role in the development of the pharyngeal arches and the structures derived from these tissues, including the craniofacial skeleton. They are typically expressed in a nested pattern along the proximo‐distal axis of the branchial arches in mice. This pattern is known as the “Dlx code” and has been proposed to be responsible for an early regional patterning of branchial arches in mammals. A number of cis‐ regulatory elements (CREs) have been identified within the Dlx loci, which target reporter expression to the developing pharyngeal arches of the mouse. Most of these CREs are located in the intergenic regions between the two genes constituting a Dlx bigene cluster. Therefore, the regionalized dlx expression in the branchial arches could be the result of the shared activities of these regulatory regions. Here we analyze previously published and new results showing these CREs are highly conserved in both their sequence and their activity in the pharyngeal arches of two distantly related vertebrates, the zebrafish and the mouse. A better understanding of Dlx gene regulation of the Dlx genes and of the genetic cascades in which they are involved can lead to clues explaining variations in morphology of the craniofacial regions of vertebrates.  相似文献   

8.
Recently we isolated a homolog of the Drosophila single-minded (sim) gene from a zebrafish cDNA library. The 4380-bp of zebrafish sim cDNA encodes a polypeptide of 585 amino acids with strikingly conserved bHLH and PAS A/B domains in the amino-terminal region. During embryogenesis, sim mRNA appears in the animal hemisphere as early as 3 h post-fertilization and is expressed in a widespread pattern throughout the epiblast at the 75% epiboly stage. During the segmentation stage, sim mRNA is prominently expressed in the primordium of the hindbrain and appears as a transverse stripe in the epithelial layers of the mid-diencephalic boundary (MDB). During the pharyngula stage, sim is no longer expressed in the hindbrain, but continues to be expressed in the MDB and extends to the caudal diencephalon along the ventral midline. In addition, sim mRNA is prominent in the two pharyngeal arches. During the larval stage, sim mRNA is transcribed in the esophagus, liver, pancreas, and intestine. In contrast, sim mRNA is no longer detectable in the forebrain after hatching. In adult fish, sim is widely expressed in brain, eyes, gill, heart, liver, and intestine.  相似文献   

9.
The cadherin superfamily members play an important role in mediating cell-cell contact and adhesion (Takeichi, M., 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455). A distinct subfamily, neither belonging to the classical or protocadherins includes Fat, the largest member of the cadherin super-family. Fat was originally identified in Drosophila. Subsequently, orthologues of Fat have been described in man (Dunne, J., Hanby, A. M., Poulsom, R., Jones, T. A., Sheer, D., Chin, W. G., Da, S. M., Zhao, Q., Beverley, P. C., Owen, M. J., 1995. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207-223), rat (Ponassi, M., Jacques, T. S., Ciani, L., ffrench, C. C., 1999. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech. Dev. 80, 207-212) and mouse (Cox, B., Hadjantonakis, A. K., Collins, J. E., Magee, A. I., 2000. Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat [In Process Citation]. Dev. Dyn. 217, 233-240). In Drosophila, Fat has been shown to play an important role in both planar cell polarity and cell boundary formation during development. In this study we describe the characterization of zebrafish Fat, the first non-mammalian, vertebrate Fat homologue to be identified. The Fat protein has 64% amino acid identity and 80% similarity to human FAT and an identical domain structure to other vertebrate Fat proteins. During embryogenesis fat mRNA is expressed in the developing brain, specialised epithelial surfaces the notochord, ears, eyes and digestive tract, a pattern similar but distinct to that found in mammals.  相似文献   

10.
11.
12.
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.  相似文献   

13.
In the zebrafish embryo, cells fated to give rise to the rostral brain move in a concerted fashion and retain tissue coherence during morphogenesis. We demonstrate here that Otx proteins have a dramatic effect on cell-cell interactions when expressed ectopically in the zebrafish embryo. Injection of zebrafish Otx1 or Drosophila otd RNAs into a single cell at the 16-cell stage results in aggregation of descendants of the injected cell. The Otx/Otd homeodomain is necessary for aggregation and appears to be sufficient for the effect when substituted for the homeodomain of an unrelated homeodomain protein. When cells containing injected zOtx1 RNA are limited to the area that is normally fated to become the anterior brain and neural retina, the induced aggregates contribute to anterior brain and retina tissues. In many other embryonic regions, which do not express endogenous zOtx1, the aggregates appear to be incompatible with normal development and do not integrate into developing tissues. By using an activatable Otx1-glutocorticoid receptor fusion protein that results in the stimulation of cell association, we demonstrate that cell aggregates can form as a result of Otx1 activity even after gastrulation is completed. Time-lapse analysis of cell movements show that cell aggregation occurs with only a slight inhibition of the rate of convergence. These results suggest that promotion of cell adhesion or mediation of cell repulsion may be one of the normal functions of the Otx proteins in the establishment of the anterior brain.  相似文献   

14.
To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0–4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C.  相似文献   

15.
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.  相似文献   

16.
BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.  相似文献   

17.
In human embryos the hypophyseal sac (Rathke's pouch) originates at the roof of the mouth until stage 15 as a broad rim. As the mandibular arch and the maxillary swelling enhance the mesodermal masses in forming the early palatal shelves the rim is reduced to a cleft of about 0.2 mm in broadness in stage 17. From stage 18 up to stage 23 there is a prominent papilla in the midline of the mouth's roof which later on may become recanalized. The different SEM-aspects of the pharyngeal hypophysis are demonstrated.  相似文献   

18.
叶酸缺乏可导致胚胎先天性发育异常,二氢叶酸还原酶是叶酸生物学作用通路中的关键因子,其功能阻抑将抑制叶酸生物学作用的发挥.咽弓是脊椎动物胚胎发育中头面部结构、心脏流出道等的共同前体.在模式生物斑马鱼中,利用基因表达阻抑以及过表达技术,探讨二氢叶酸还原酶基因(DHFR)在斑马鱼咽弓发育过程中的作用.石蜡切片以及软骨染色结果显示,DHFR表达阻抑导致斑马鱼咽弓以及腭发育明显异常,而DHFR过表达可部分挽救上述发育异常表型.TBX1和HAND2在咽弓发育中有重要作用.通过胚胎整体原位杂交以及Real-timePCR技术检测TBX1和HAND2表达水平.DHFR表达阻抑后TBX1和HAND2的表达降低,DHFR过表达可使TBX1和HAND2的表达增加.上述结果表明,DHFR在斑马鱼咽弓发育过程中扮演重要角色,DHFR通过影响TBX1和HAND2的表达而调控咽弓的形成和分化.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号