首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

2.
In order to address the recognition mechanism of the fragments of antibody variable regions, termed Fv, toward their target antigen, an x-ray crystal structure of an anti-hen egg white lysozyme antibody (HyHEL-10) Fv fragment complexed with its cognate antigen, hen egg white lysozyme (HEL), was solved at 2.3 A. The overall structure of the complex is similar to that reported in a previous article dealing with the Fab fragment-HEL complex (PDB ID code,). However, the areas of Fv covered by HEL upon complex formation increased by about 100 A(2) in comparison with the Fab-HEL complex, and two local structural differences were observed in the heavy chain of the variable region (VH). In addition, small but significant local structural changes were observed in the antigen, HEL. The x-ray data permitted the identification of two water molecules between the VH and HEL and six water molecules retained in the interface between the antigen and the light chain complementarity determining regions (CDRs) 2 and 3 (CDR-L2 and CDR-L3). These water molecules bridge the antigen-antibody interface through hydrogen bond formation in the VL-HEL interface. Eleven water molecules were found to complete the imperfect VH-VL interface, suggesting that solvent molecules mediate the stabilization of interaction between variable regions. These results suggest that the unfavorable effect of deletion of constant regions on the antigen-antibody interaction is compensated by an increase in favorable interactions, including structural changes in the antigen-antibody interface and solvent-mediated hydrogen bond formation upon complex formation, which may lead to a minimum decreased affinity of the antibody Fv fragment toward its antigen.  相似文献   

3.
BACKGROUND: Elucidating the structural basis of antigen-antibody recognition ideally requires a structural comparison of free and complexed components. To this end we have studied a mouse monoclonal antibody, denoted 13B5, raised against p24, the capsid protein of HIV-1. We have previously described the first crystal structure of intact p24 as visualized in the Fab13B5-p24 complex. Here we report the structure of the uncomplexed Fab13B5 at 1.8 A resolution and analyze the Fab-p24 interface and the conformational changes occurring upon complex formation. RESULTS: Fab13B5 recognizes a nearly continuous epitope comprising a helix-turn-helix motif in the C-terminal domain of p24. Only 4 complementarity-determining regions (CDRs) are in contact with p24 with most interactions being by the heavy chain. Comparison of the free and complexed Fab reveals that structural changes upon binding are localized to a few side chains of CDR-H1 and -H2 but involve a larger, concerted displacement of CDR-H3. Antigen binding is also associated with an 8 degrees relative rotation of the heavy and light chain variable regions. In p24, small conformational changes localized to the turn between the two helices comprising the epitope result from Fab binding. CONCLUSIONS: The relatively small area of contact between Fab13B5 and p24 may be related to the fact that the epitope is a continuous peptide rather than a more complex protein surface and correlates with a relatively low affinity of antigen and antibody. Despite this, a significant quaternary structural change occurs in the Fab upon complex formation, with additional smaller adaptations of both antigen and antibody.  相似文献   

4.
Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand–RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structural model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.  相似文献   

5.
BACKGROUND: CD40 ligand (CD40L or CD154), a member of the tumor necrosis factor (TNF) family, plays a critical role in both humoral and cellular immune responses and has been implicated in biological pathways involving epithelial cells, fibroblasts, and platelets. Such a pathway is T cell-mediated B cell activation, a process that occurs through the interaction of CD40L with CD40 receptor expressed on B cells. It results in various B cell responses, including immunoglobulin isotype switching and B cell differentiation and proliferation. These responses can be inhibited by the monoclonal antibody 5c8, which binds with high affinity to CD40L. RESULTS: To understand the structural basis of the inhibition, we determined the crystal structure of the complex of the extracellular domain of CD40L and the Fab fragment of humanized 5c8 antibody. The structure shows that the complex has the shape of a three-bladed propeller with three Fab fragments bound symmetrically to a CD40L homotrimer. To further study the nature of the antibody-antigen interface, we assessed the ability of 23 site-directed mutants of CD40L to bind to 5c8 and CD40 and analyzed the results in the context of the crystal structure. Finally, we observed via confocal microscopy that 5c8 binding to CD40L on the cell surface results in the formation of patches of clustered complexes. CONCLUSIONS: The structure reveals that 5c8 neutralizes CD40L function by sterically blocking CD40 binding. The antigenic epitope is localized in a region of the surface that is likely to be structurally perturbed as a result of genetic mutations that cause hyper-IgM syndrome. The symmetric trimeric arrangement of the Fab fragments in the complex results in a geometry that facilitates the formation of large clusters of complexes on the cell surface.  相似文献   

6.
The HyHEL-5 antibody has more than a thousandfold lower affinity for bobwhite quail lysozyme (BWQL) than for hen egg-white lysozyme (HEL). Four sequence differences exist between BWQL and HEL, of which only one is involved in the interface with the Fab. The structure of bobwhite quail lysozyme has been determined in the uncomplexed state in two different crystal forms and in the complexed state with HyHEL-5, an anti-hen egg-white lysozyme Fab. Similar backbone conformations are observed in the three molecules of the two crystal forms of uncomplexed BWQL, although they show considerable variability in side-chain conformation. A relatively mobile segment in uncomplexed BWQL is observed to be part of the HyHEL-5 epitope. No major backbone conformational differences are observed in the lysozyme upon complex formation, but side-chain conformational differences are seen in surface residues that are involved in the interface with the antibody. The hydrogen bonding in the interface between BWQL and HyHEL-5 is similar to that in previously determined lysozyme-HyHEL-5 complexes. © 1996 Wiley-Liss, Inc.  相似文献   

7.
D A Langs 《Biopolymers》1989,28(1):259-266
The crystal structure of the uncomplexed orthorhombic form of gramicidin A has been determined at 0.86 A resolution. The polypeptide crystallizes from ethanol as a left-handed, double-stranded, antiparallel beta 5.6-helical dimer that is 31 A long and an average of 4.8 A in diameter. The uncomplexed channel does not contain ions or solvent molecules, and its diameter is not uniform but varies from a minimum of 3.85 A to a maximum of 5.47 A. There are three empty cavities in the channel that have a diameter exceeding 5.25 A and appear to be large enough to accommodate water molecules or potassium ions in a chemically reasonable coordination environment. The observed crystal structure does not offer any obvious clues as to why an antiparallel beta 5.6-helix cannot function as an ion channel in lipid bilayers.  相似文献   

8.
Human urokinase-type plasminogen activator receptor (uPAR/CD87) is expressed at the invasive interface of the tumor-stromal microenvironment in many human cancers and interacts with a wide array of extracellular molecules. An anti-uPAR antibody (ATN615) was prepared using hybridoma technology. This antibody binds to uPAR in vitro with high affinity (K(d) approximately 1 nM) and does not interfere with uPA binding to uPAR. Here we report the crystal structure of the Fab fragment of ATN615 at 1.77 A and the analysis of ATN615-suPAR-ATF structure that was previously determined, emphasizing the ATN615-suPAR interaction. The complementarity determining regions (CDRs) of ATN615 consist of a high percentage of aromatic residues, and form a relatively flat and undulating surface. The ATN615 Fab fragment recognizes domain 3 of suPAR. The antibody-antigen recognition involves 11 suPAR residues and 12 Fab residues from five CDRs. Structural data suggest that Pro188, Asn190, Gly191, and Arg192 residues of uPAR are the key residues for the antibody recognition, while Pro189 and Arg192 render specificity of ATN615 for human uPAR. Interestingly, this antibody-antigen interface has a small contact area, mainly polar interaction with little hydrophobic character, yet has high binding strength. Furthermore, several solvent molecules (assigned as polyethylene glycols) were clearly visible in the binding interface between antibody and antigen, suggesting that solvent molecules may be important for the maximal binding between suPAR and ATN615 Fab. ATN615 undergoes small but noticeable changes in its CDR region upon antigen binding.  相似文献   

9.
Li Y  Li H  Smith-Gill SJ  Mariuzza RA 《Biochemistry》2000,39(21):6296-6309
Antigen-antibody complexes provide useful models for studying the structure and energetics of protein-protein interactions. We report the cloning, bacterial expression, and crystallization of the antigen-binding fragment (Fab) of the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 in both free and antigen-bound forms. The three-dimensional structure of Fab HyHEL-63 complexed with HEL was determined to 2.0 A resolution, while the structure of the unbound antibody was determined in two crystal forms, to 1.8 and 2.1 A resolution. In the complex, 19 HyHEL-63 residues from all six complementarity-determining regions (CDRs) of the antibody contact 21 HEL residues from three discontinuous polypeptide segments of the antigen. The interface also includes 11 bound water molecules, 3 of which are completely buried in the complex. Comparison of the structures of free and bound Fab HyHEL-63 reveals that several of the ordered water molecules in the free antibody-combining site are retained and that additional waters are added upon complex formation. The interface waters serve to increase shape and chemical complementarity by filling cavities between the interacting surfaces and by contributing to the hydrogen bonding network linking the antigen and antibody. Complementarity is further enhanced by small (<3 A) movements in the polypeptide backbones of certain antibody CDR loops, by rearrangements of side chains in the interface, and by a slight shift in the relative orientation of the V(L) and V(H) domains. The combining site residues of complexed Fab HyHEL-63 exhibit reduced temperature factors compared with those of the free Fab, suggesting a loss in conformational entropy upon binding. To probe the relative contribution of individual antigen residues to complex stabilization, single alanine substitutions were introduced in the epitope of HEL recognized by HyHEL-63, and their effects on antibody affinity were measured using surface plasmon resonance. In agreement with the crystal structure, HEL residues at the center of the interface that are buried in the complex contribute most to the binding energetics (DeltaG(mutant) - DeltaG(wild type) > 3.0 kcal/mol), whereas the apparent contributions of solvent-accessible residues at the periphery are much less pronounced (<1.5 kcal/mol). In the latter case, the mutations may be partially compensated by local rearrangements in solvent structure that help preserve shape complementarity and the interface hydrogen bonding network.  相似文献   

10.

Background

Although rabbit antibodies are widely used in research, no structures of rabbit antigen-binding fragments (Fab) have been reported. M204 is a rabbit monoclonal antibody that recognizes a generic epitope that is common to prefibrillar amyloid oligomers formed from many different amyloidogenic sequences. Amyloid oligomers are widely suspected to be a primary causative agent of pathogenesis in several age-related neurodegenerative diseases, such as Alzheimer's disease. The detailed structure of these amyloid oligomers is not known nor is the mechanism for the recognition of the generic epitope by conformation-dependent monoclonal antibodies.

Method

As a first approach to understanding the mechanism of conformation-dependent antibody recognition, we have crystallized the Fab of M204.

Results

We have determined the structure of the Fab of M204 at 1.54 Å resolution. The crystal structure reveals details of the M204 antigen combining site and features unique to rabbit Fabs such as an interdomain disulfide bond on its light chain.

General significance

Based on the structural features of the antigen-combining site of the M204, we rule out a “steric zipper” formation, as found in numerous amyloid fibril structures, as a mechanism of antibody-antigen recognition. The details of the first rabbit immunoglobulin Fab structure might also be useful for exploiting the potential of rabbit monoclonal antibodies for the development of humanized rabbit antibodies as therapeutic agents.  相似文献   

11.
The site on influenza virus N9 neuraminidase recognized by NC41 monoclonal antibody comprises 19 amino acid residues that are in direct contact with 17 residues on the antibody. Single sequence changes in some of the neuraminidase residues in the site markedly reduce antibody binding. However, two mutants have been found within the site, Ile368 to Arg and Asn329 to Asp selected by antibodies other than NC41, and these mutants bind NC41 antibody with only slightly reduced affinity. The three-dimensional structures of the two mutant N9-NC41 antibody complexes as derived from the wild-type complex are presented. Both structures show that some amino acid substitutions can be accommodated within an antigen-antibody interface by local structural rearrangements around the mutation site. In the Ile368 to Arg mutant complex, the side-chain of Arg368 is shifted by 2.9 A from its position in the uncomplexed mutant and a shift of 1.3 A in the position of the light chain residue HisL55 with respect to the wild-type complex is also observed. In the other mutant, the side-chain of Asp329 appears rotated by 150 degrees around C alpha-C beta with respect to the uncomplexed mutant, so that the carboxylate group is moved to the periphery of the antigen-antibody interface. The results provide a basis for understanding some of the potential structural effects of somatic hypermutation on antigen-antibody binding in those cases where the mutation in the antibody occurs at antigen-contacting residues, and demonstrate again the importance of structural context in evaluating the effect of amino acid substitutions on protein structure and function.  相似文献   

12.
6A6 is a murine monoclonal antibody raised against the humanized anti-tissue factor antibody D3H44. 6A6 is able to completely neutralize the anticoagulant activity of D3H44 in tissue factor-dependent functional assays, such as endotoxin-induced whole blood clotting, prothrombin time, as well as factor X and factor IX activation. ELISA-type assays further showed that 6A6 binds to an epitope with critical determinants on the V(L) domain of D3H44. The possibility that the anti-idiotypic 6A6 might carry an "internal image" of the original antigen (tissue factor) was examined using the X-ray structure of the 6A6-Fab/D3H44-Fab complex determined at 2.5A resolution. We find that 6A6 structurally mimics tissue factor only so far as it combines with the antigen recognition surface of D3H44. While 6A6 contacts both V(L) and V(H) domains of D3H44, as does tissue factor, there is more contact with the D3H44 V(L) domain and less with the D3H44 V(H) domain relative to the tissue factor contacts on D3H44. Additionally, there is an almost total lack of correspondence between 6A6 and tissue factor at the level of amino acid side-chain functional groups. Despite the fact that both tissue factor and 6A6 are composed largely of beta-sheets, they present fundamentally different elements of secondary structure to D3H44; tissue factor presents beta-sheets edge-on, while 6A6 uses mostly loops. Finally, the finding that 6A6 competes with tissue factor for D3H44 binding raises the possibility of using 6A6 as an antidote for D3H44 anticoagulant therapy. To this end, we constructed a chimeric murine/human 6A6-Fab, which effectively neutralized D3H44 and fully restored tissue factor function in enzymatic assays.  相似文献   

13.
The DNA oligomer d(CGCGTG) crystallizes as a Z-DNA double helix containing two guanine-thymine base pair mismatches of the wobble type. The crystal diffracts to 1 A resolution and the structure has been solved and refined. At this resolution, a large amount of information is revealed about the organization of the water molecules in the lattice generally and more specifically around the wobble base pairs. By comparing this structure with the analogous high resolution structure of d(CGCGCG) we can visualize the structural changes as well as the reorganization of the solvent molecules associated with wobble base pairing. There is only a small distortion of the Z-DNA backbone resulting from introduction of the GT mismatched base pairs. The water molecules cluster around the wobble base pair taking up all of the hydrogen bonding capabilities of the bases due to wobble pairing. These bridging water molecules serve to stabilize the base-base interaction and, thus, may be generally important for base mispairing either in DNA or in RNA molecules.  相似文献   

14.
The solvation of the antibody–antigen Fv D1.3–lysozyme complex is investigated through a study of the conservation of water molecules in crystal structures of the wild-type Fv fragment of antibody D1.3, 5 free lysozyme, the wild-type Fv D1.3–lysozyme complex, 5 Fv D1.3 mutants complexed with lysozyme and the crystal structure of an idiotope (Fv D1.3)-abti-idiotope (Fv E5.2) complex. In all, there are 99 water molecules common to the wild-type and mutant antibody–lysozyme complexes. The antibody–lysozyme interface includes 25 well-ordered solvent molecules, conserved among the wild-type and mutant Fv D1.3–lysozyme complexes, which are bound directly or through other water molecules to both antibody and antigen. In addition to contributing hydrogen bonds to the antibody–antigen interaction the solvent molecules fill many interface cavities. Comparison with x-ray crystal structures of free Fv D1.3 and free lysozyme shows that 20 of these conserved interface waters in the complex were bound to one of the free proteins. Uo to 23 additional water molecules are also found in the antibody–antigen interface, however these waters do no bridge antibody and antigen and their temperature factors are much higher than those of the 25 well-ordered waters. Fifteen water molecules are displaced to form the complex, some of which are substituted by hydrophilic protein atoms, and 5 water molecules are added at the antibody–antigen interface with the formation of the complex. While the current crystal models of the D1.3–lysozyme complex do not demonstrate the increase in bound waters found in a physico-chemical study of the interaction at decreased water activities, the 25 well-ordered interface water contribute a net gain of 10 hydrogen bonds to complex stability.  相似文献   

15.
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
BACKGROUND: The 3.0 A crystal structure of the vitamin B(12) RNA aptamer revealed an unusual tertiary structure that is rich in novel RNA structural motifs. Important details of the interactions that stabilize noncanonical base pairing and the role of solvent in the structure were not apparent owing to the limited resolution. RESULTS: The structure of the vitamin B(12) RNA aptamer in complex with its ligand has been determined at 2.3 A resolution by X-ray crystallography. The crystallographic asymmetric unit contains five independent copies of the aptamer-vitamin B(12) complex, making it possible to accurately define well-conserved features. The core of the aptamer contains an unusual water-filled channel that is buried between the three strands of an RNA triplex. Well-ordered water molecules positioned within this channel form bridging hydrogen bonds and stabilize planar base triples that otherwise lack significant direct base-base contacts. The water channel terminates at the interface between the RNA and the bound ligand, leaving a pair of water molecules appropriately positioned to hydrogen bond with the highly polarized cyanide nitrogen of vitamin B(12). Analysis of the general solvation patterns for each nucleotide suggests that water molecules are not precisely positioned, as observed in previous RNA duplex structures, but instead might adjust in response to the varying local environment. Unusual intermolecular base pairing contributes to the formation of three different dimerization contacts that drive formation of the crystal lattice. CONCLUSIONS: The structure demonstrates the important role of water molecules and noncanonical base pairing in driving the formation of RNA tertiary structure and facilitating specific interactions of RNAs with other molecules.  相似文献   

17.
Certain antibody Fab fragments directed against the C terminus of outer surface protein B (OspB), a major lipoprotein of the Lyme disease spirochete, Borrelia burgdorferi, have the unusual property of being bactericidal even in the absence of complement. We report here x-ray crystal structures of a C-terminal fragment of B. burgdorferi OspB, which spans residues 152-296, alone at 2.0-A resolution, and in a complex with the bactericidal Fab H6831 at 2.6-A resolution. The H6831 epitope is topologically analogous to the LA-2 epitope of OspA and is centered around OspB Lys-253, a residue essential for H6831 recognition. A beta-sheet present in the free OspB fragment is either disordered or removed by proteolysis in the H6831-bound complex. Other conformational changes between free and H6831-bound structures are minor and appear to be related to this loss. In both crystal structures, OspB C-terminal fragments form artificial dimers connected by intermolecular beta-sheets. OspB structure, stability, and possible mechanisms of killing by H6831 and other bactericidal Fabs are discussed in light of the structural data.  相似文献   

18.
Peptidoglycan recognition proteins (PGRPs) are important components of the innate immune system which provide the first line of defense against invading microbes. There are four members in the family of PGRPs in animals of which PGRP-S is a common domain. It is responsible for the binding to microbial cell wall molecules. In order to understand the mode of binding of PGRP-S to the components of the bacterial cell wall, the structure of the complex of camel PGRP-S (CPGRP-S) with heptanoic acid has been determined at 2.15 Å resolution. The structure determination showed the presence of four crystallographically independent protein molecules which are designated as A, B, C, and D. These four protein molecules associate in the form of two homodimers which are represented as A-B and C-D dimers. The association between molecules A and B gives rise to a shallow cleft on the surface at one end of the dimeric interface. One molecule of heptanoic acid is observed at this binding site in the A-B dimer. The association of C and D molecules results in the formation of a long zig-zag tunnel along with the C-D interface. In the cleft at the C-D interface, three molecules of hydrogen peroxide along with other non-water solvent molecules have been observed. The analysis of the several complexes of CPGRP-S with fatty acids and non-fatty acids such as peptidoglycan, lipopolysaccharide, and lipoteichoic acid shows that the fatty acids bind at the A-B site while non-fatty acids interact through C-D interface.  相似文献   

19.
The extracellular portion of the VEGF and PlGF receptor, Flt-1 (or VEGFR-1), consists of seven immunoglobulin-like domains. The second domain from the N terminus (Flt-1D2) is necessary and sufficient for high affinity VEGF binding. The 1.7 A resolution crystal structure of Flt-1D2 bound to VEGF revealed that this domain is a member of the I-set of the immunoglobulin superfamily, but has several unusual features including a region near the N terminus that bulges away from the domain rather than pairing with the neighboring beta-strand. Some of the residues in this region make contact with VEGF, raising the possibility that this bulge could be a consequence of VEGF binding and might not be present in the absence of ligand. Here we report the three-dimensional structure of Flt-1D2 in its uncomplexed form determined by NMR spectroscopy. A semi-automated method for NOE assignment that takes advantage of the previously solved crystal structure was used to facilitate rapid analysis of the 3D NOESY spectra. The solution structure is very similar to the previously reported VEGF-bound crystal structure; the N-terminal bulge is present, albeit in a different conformation. We also report the 2.7 A crystal structure of Flt-1D2 in complex with VEGF solved in a different crystal form that reveals yet another conformation for the N-terminal bulge region. (1)H-(15)N heteronuclear NOEs indicate this region is flexible in solution; the crystal structures show that this region is able to adopt more than one conformation even when bound to VEGF. Thus, VEGF-binding is not accompanied by significant structural change in Flt-1D2, and the unusual structural features of Flt-1D2 are an intrinsic property of this domain.  相似文献   

20.
The crystal structure of Cel44A, which is one of the enzymatic components of the cellulosome of Clostridium thermocellum, was solved at a resolution of 0.96 A. This enzyme belongs to glycoside hydrolase family (GH family) 44. The structure reveals that Cel44A consists of a TIM-like barrel domain and a beta-sandwich domain. The wild-type and the E186Q mutant structures complexed with substrates suggest that two glutamic acid residues, Glu(186) and Glu(359), are the active residues of the enzyme. Biochemical experiments were performed to confirm this idea. The structural features indicate that GH family 44 belongs to clan GH-A and that the reaction catalyzed by Cel44A is retaining type hydrolysis. The stereochemical course of hydrolysis was confirmed by a (1)H NMR experiment using the reduced cellooligosaccharide as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号