首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virtual drug screening using protein-ligand docking techniques is a time-consuming process, which requires high computational power for binding affinity calculation. There are millions of chemical compounds available for docking. Eliminating compounds that are unlikely to exhibit high binding affinity from the screening set should speed-up the virtual drug screening procedure. We performed docking of 6353 ligands against twenty-one protein X-ray crystal structures. The docked ligands were ranked according to their calculated binding affinities, from which the top five hundred and the bottom five hundred were selected. We found that the volume and number of rotatable bonds of the top five hundred docked ligands are similar to those found in the crystal structures and corresponded with the volume of the binding sites. In contrast, the bottom five hundred set contains ligands that are either too large to enter the binding site, or too small to bind with high specificity and affinity to the binding site. A pre-docking filter that takes into account shapes and volumes of the binding sites as well as ligand volumes and flexibilities can filter out low binding affinity ligands from the screening sets. Thus, the virtual drug screening procedure speed is increased.  相似文献   

2.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

3.
Knowledge-based scoring function to predict protein-ligand interactions   总被引:5,自引:0,他引:5  
The development and validation of a new knowledge-based scoring function (DrugScore) to describe the binding geometry of ligands in proteins is presented. It discriminates efficiently between well-docked ligand binding modes (root-mean-square deviation <2.0 A with respect to a crystallographically determined reference complex) and those largely deviating from the native structure, e.g. generated by computer docking programs. Structural information is extracted from crystallographically determined protein-ligand complexes using ReLiBase and converted into distance-dependent pair-preferences and solvent-accessible surface (SAS) dependent singlet preferences for protein and ligand atoms. Definition of an appropriate reference state and accounting for inaccuracies inherently present in experimental data is required to achieve good predictive power. The sum of the pair preferences and the singlet preferences is calculated based on the 3D structure of protein-ligand binding modes generated by docking tools. For two test sets of 91 and 68 protein-ligand complexes, taken from the Protein Data Bank (PDB), the calculated score recognizes poses generated by FlexX deviating <2 A from the crystal structure on rank 1 in three quarters of all possible cases. Compared to FlexX, this is a substantial improvement. For ligand geometries generated by DOCK, DrugScore is superior to the "chemical scoring" implemented into this tool, while comparable results are obtained using the "energy scoring" in DOCK. None of the presently known scoring functions achieves comparable power to extract binding modes in agreement with experiment. It is fast to compute, regards implicitly solvation and entropy contributions and produces correctly the geometry of directional interactions. Small deviations in the 3D structure are tolerated and, since only contacts to non-hydrogen atoms are regarded, it is independent from assumptions of protonation states.  相似文献   

4.
Mason AC  Jensen JH 《Proteins》2008,71(1):81-91
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively.  相似文献   

5.
The conformation adopted by a ligand on binding to a receptor may differ from its lowest-energy conformation in solution. In addition, the bound ligand is more conformationally restricted, which is associated with a configurational entropy loss. The free energy change due to these effects is often neglected or treated crudely in current models for predicting binding affinity. We present a method for estimating this contribution, based on perturbation theory using the quasi-harmonic model of Karplus and Kushick as a reference system. The consistency of the method is checked for small model systems. Subsequently we use the method, along with an estimate for the enthalpic contribution due to ligand-receptor interactions, to calculate relative binding affinities. The AMBER force field and generalized Born implicit solvent model is used. Binding affinities were estimated for a test set of 233 protein-ligand complexes for which crystal structures and measured binding affinities are available. In most cases, the ligand conformation in the bound state was significantly different from the most favorable conformation in solution. In general, the correlation between measured and calculated ligand binding affinities including the free energy change due to ligand conformational change is comparable to or slightly better than that obtained by using an empirically-trained docking score. Both entropic and enthalpic contributions to this free energy change are significant.  相似文献   

6.
Flexible ligand docking using conformational ensembles.   总被引:1,自引:1,他引:0       下载免费PDF全文
Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation.  相似文献   

7.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

8.
Accommodating backbone flexibility continues to be the most difficult challenge in computational docking of protein-protein complexes. Towards that end, we simulate four distinct biophysical models of protein binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that uses a quasi-kinetic search process to emulate the diffusional encounter of two proteins and to identify low-energy complexes. The four binding models are as follows: (1) key-lock (KL) model, using rigid-backbone docking; (2) conformer selection (CS) model, using a novel ensemble docking algorithm; (3) induced fit (IF) model, using energy-gradient-based backbone minimization; and (4) combined conformer selection/induced fit (CS/IF) model. Backbone flexibility was limited to the smaller partner of the complex, structural ensembles were generated using Rosetta refinement methods, and docking consisted of local perturbations around the complexed conformation using unbound component crystal structures for a set of 21 target complexes. The lowest-energy structure contained > 30% of the native residue-residue contacts for 9, 13, 13, and 14 targets for KL, CS, IF, and CS/IF docking, respectively. When applied to 15 targets using nuclear magnetic resonance ensembles of the smaller protein, the lowest-energy structure recovered at least 30% native residue contacts in 3, 8, 4, and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF docking of the nuclear magnetic resonance ensemble performed equally well or better than KL docking with the unbound crystal structure in 10 of 15 cases. The marked success of CS and CS/IF docking shows that ensemble docking can be a versatile and effective method for accommodating conformational plasticity in docking and serves as a demonstration for the CS theory—that binding-competent conformers exist in the unbound ensemble and can be selected based on their favorable binding energies.  相似文献   

9.
Huang SY  Zou X 《Proteins》2007,66(2):399-421
One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large-scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m, where m represents the m-th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root-mean-square deviation <2.5 A if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re-ranking, and significantly better than that of single rigid-receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)-based methods to accommodate protein flexibility.  相似文献   

10.
We describe a combinatorial method for de novo ligand design to an ensemble of receptor structures. Receptor conformations, protonation states, and structural water molecules are considered consistently within the framework of de novo ligand design. The method relies on Monte Carlo optimization to search the space of ligand structures, conformations, and rigid-body movements as well as receptor models. The method is applied to an ensemble of HIV protease and human collagenase receptor models. Ligand structures generated de novo exhibit the correct hydrogen-bonding pattern in the core of the active site, with hydrophobic groups extending into the receptor S1 and S1' pocket space. Furthermore, it is shown that known ligands are recovered in the correct binding mode and in the native, most tightly binding receptor model.  相似文献   

11.
We present a large test set of protein-ligand complexes for the purpose of validating algorithms that rely on the prediction of protein-ligand interactions. The set consists of 305 complexes with protonation states assigned by manual inspection. The following checks have been carried out to identify unsuitable entries in this set: (1) assessing the involvement of crystallographically related protein units in ligand binding; (2) identification of bad clashes between protein side chains and ligand; and (3) assessment of structural errors, and/or inconsistency of ligand placement with crystal structure electron density. In addition, the set has been pruned to assure diversity in terms of protein-ligand structures, and subsets are supplied for different protein-structure resolution ranges. A classification of the set by protein type is available. As an illustration, validation results are shown for GOLD and SuperStar. GOLD is a program that performs flexible protein-ligand docking, and SuperStar is used for the prediction of favorable interaction sites in proteins. The new CCDC/Astex test set is freely available to the scientific community (http://www.ccdc.cam.ac.uk).  相似文献   

12.
Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we developed an efficient computational method for calculating protein-ligand binding affinity, which is based on molecular mechanics generalized Born/surface area (MM-GBSA) calculations and Jarzynski identity. Jarzynski identity is an exact relation between free energy differences and the work done through non-equilibrium process, and MM-GBSA is a semimacroscopic approach to calculate the potential energy. To calculate the work distribution when a ligand is pulled out of its binding site, multiple protein-ligand conformations are randomly generated as an alternative to performing an explicit single-molecule pulling simulation. We assessed the new method, multiple random conformation/MM-GBSA (MRC-MMGBSA), by evaluating ligand-binding affinities (scores) for four target proteins, and comparing these scores with experimental data. The calculated scores were qualitatively in good agreement with the experimental binding affinities, and the optimal docking structure could be determined by ranking the scores of the multiple docking poses obtained by the molecular docking process. Furthermore, the scores showed a strong linear response to experimental binding free energies, so that the free energy difference of the ligand binding (ΔΔG) could be calculated by linear scaling of the scores. The error of calculated ΔΔG was within ≈±1.5 kcal•mol−1 of the experimental values. Particularly, in the case of flexible target proteins, the MRC-MMGBSA scores were more effective in ranking ligands than those generated by the MM-GBSA method using a single protein-ligand conformation. The results suggest that, owing to its lower computational costs and greater accuracy, the MRC-MMGBSA offers efficient means to rank the ligands, in the post-docking process, according to their binding affinities, and to compare these directly with the experimental values.  相似文献   

13.
G protein-coupled receptors (GPCRs) are intensely studied as drug targets and for their role in signaling. With the determination of the first crystal structures, interest in structure-based ligand discovery increased. Unfortunately, for most GPCRs no experimental structures are available. The determination of the D(3) receptor structure and the challenge to the community to predict it enabled a fully prospective comparison of ligand discovery from a modeled structure versus that of the subsequently released crystal structure. Over 3.3 million molecules were docked against a homology model, and 26 of the highest ranking were tested for binding. Six had affinities ranging from 0.2 to 3.1 μM. Subsequently, the crystal structure was released and the docking screen repeated. Of the 25 compounds selected, five had affinities ranging from 0.3 to 3.0 μM. One of the new ligands from the homology model screen was optimized for affinity to 81 nM. The feasibility of docking screens against modeled GPCRs more generally is considered.  相似文献   

14.
SuperStar is an empirical method for identifying interaction sites in proteins, based entirely on the experimental information about non-bonded interactions, present in the IsoStar database. The interaction information in IsoStar is contained in scatterplots, which show the distribution of a chosen probe around structure fragments. SuperStar breaks a template molecule (e.g. a protein binding site) into structural fragments which correspond to those in the scatterplots. The scatterplots are then superimposed on the corresponding parts of the template and converted into a composite propensity map.The original version of SuperStar was based entirely on scatterplots from the CSD. Here, scatterplots based on protein-ligand interactions are implemented in SuperStar, and validated on a test set of 122 X-ray structures of protein-ligand complexes. In this validation, propensity maps are compared with the experimentally observed positions of ligand atoms of comparable types. Although non-bonded interaction geometries in small molecule structures are similar to those found in protein-ligand complexes, their relative frequencies of occurrence are different. Polar interactions are more common in the first class of structures, while interactions between hydrophobic groups are more common in protein crystals. In general, PDB and CSD-based SuperStar maps appear equally successful in the prediction of protein-ligand interactions. PDB-based maps are more suitable to identify hydrophobic pockets, and inherently take into account the experimental uncertainties of protein atomic positions. If the protonation state of a histidine, aspartate or glutamate protein side-chain is known, specific CSD-based maps for that protonation state are preferred over PDB-based maps which represent an ensemble of protonation states.  相似文献   

15.
The emerging picture of biomolecular recognition is that of conformational selection followed by induced‐fit. Conformational selection theory states that binding partners exist in various conformations in solution, with binding involving a “selection” between complementary conformers. In this study, we devise a docking protocol that mimics conformational selection in protein–ligand binding and demonstrate that it significantly enhances crossdocking accuracy over Glide's flexible docking protocol, which is widely used in the pharmaceutical industry. Our protocol uses a pregenerated conformational ensemble to simulate ligand flexibility. The ensemble was generated by thorough conformational sampling coupled with conformer minimization. The generated conformers were then rigidly docked in the active site of the protein along with a postdocking minimization step that allows limited induced fit effects to be modeled for the ligand. We illustrate the improved performance of our protocol through crossdocking of 31 ligands to cocomplexed proteins of the kinase 3‐phosphoinositide dependent protein kinase‐1 extracted from the crystal structures 1H1W (ATP bound), 1OKY (staurosporine bound) and 3QD0 (bound to a potent inhibitor). Consistent with conformational selection theory, the performance of our protocol was the best for crossdocking to the cognate protein bound to the natural ligand, ATP. Proteins 2014; 82:436–451. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions.  相似文献   

17.
Mooij WT  Verdonk ML 《Proteins》2005,61(2):272-287
We present a novel atom-atom potential derived from a database of protein-ligand complexes. First, we clarify the similarities and differences between two statistical potentials described in the literature, PMF and Drugscore. We highlight shortcomings caused by an important factor unaccounted for in their reference states, and describe a new potential, which we name the Astex Statistical Potential (ASP). ASP's reference state considers the difference in exposure of protein atom types towards ligand binding sites. We show that this new potential predicts binding affinities with an accuracy similar to that of Goldscore and Chemscore. We investigate the influence of the choice of reference state by constructing two additional statistical potentials that differ from ASP only in this respect. The reference states in these two potentials are defined along the lines of Drugscore and PMF. In docking experiments, the potential using the new reference state proposed for ASP gives better success rates than when these literature reference states were used; a success rate similar to the established scoring functions Goldscore and Chemscore is achieved with ASP. This is the case both for a large, general validation set of protein-ligand structures and for small test sets of actives against four pharmaceutically relevant targets. Virtual screening experiments for these targets show less discrimination between the different reference states in terms of enrichment. In addition, we describe how statistical potentials can be used in the construction of targeted scoring functions. Examples are given for cdk2, using four different targeted scoring functions, biased towards increasingly large target-specific databases. Using these targeted scoring functions, docking success rates as well as enrichments are significantly better than for the general ASP scoring function. Results improve with the number of structures used in the construction of the target scoring functions, thus illustrating that these targeted ASP potentials can be continuously improved as new structural data become available.  相似文献   

18.
We report here an all-atom energy based Monte Carlo docking procedure tested on a dataset of 226 protein-ligand complexes. Average root mean square deviation (RMSD) from crystal conformation was observed to be approximately 0.53 A. The correlation coefficient (r(2)) for the predicted binding free energies calculated using the docked structures against experimental binding affinities was 0.72. The docking protocol is web-enabled as a free software at www.scfbio-iitd.res.in/dock.  相似文献   

19.
This article describes the implementation of a new docking approach. The method uses a Tabu search methodology to dock flexibly ligand molecules into rigid receptor structures. It uses an empirical objective function with a small number of physically based terms derived from fitting experimental binding affinities for crystallographic complexes. This means that docking energies produced by the searching algorithm provide direct estimates of the binding affinities of the ligands. The method has been tested on 50 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. All water molecules are removed from the structures and ligand molecules are minimized in vacuo before docking. The lowest energy geometry produced by the docking protocol is within 1.5 Å root-mean square of the experimental binding mode for 86% of the complexes. The lowest energies produced by the docking are in fair agreement with the known free energies of binding for the ligands. Proteins 33:367–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号