首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol synthetic and intermembrane transfer activities were studied in rat in the developing whole brain and isolated cerebellum. Specific activities of CTP: phosphatidate cytidylyltransferase and CDPdiacylglycerol: inositol phosphatidyltransferase were found to have similar developmental patterns. Levels of phosphatidyltransferase seen in fetal animals (whole brain only) and neonatal (whole brain and cerebellum) were maintained through approximately postnatal day 15, peaked at day 28, and then declined to somewhat higher than fetal levels at day 60. Cytidylyltransferase activity varied from the phosphatidylinositol synthesizing enzyme in that specific activity continued to increase up to day 60. Whole brain phosphatidylinositol transfer specific activity showed a sharp peak at postnatal day 9 after which activity was maintained at or above the fetal levels to day 60. Cerebellum phosphatidylinositol transfer specific activity had a similar peak which was delayed 7–10 days compared to the whole brain. Phosphatidylinositol transfer protein was also determined immunologically: whole brain levels increased dramatically from fetal day 16 to 18 and then remained relatively constant, while cerebellum levels (measured from postnatal day 7) displayed a variable profile between days 7 and 28. The developmental pattern of CTP: phosphatidate cytidylyltransferase in rat brain is reported here for the first time.  相似文献   

2.
Phosphatidylinositol synthetic and intermembrane transfer activities were studied in rat in the developing whole brain and isolated cerebellum. Specific activities of CTP:phosphatidate cytidylyltransferase and CDPdiacylglycerol:inositol phosphatidyltransferase were found to have similar developmental patterns. Levels of phosphatidyltransferase seen in fetal animals (whole brain only) and neonatal (whole brain and cerebellum) were maintained through approximately postnatal day 15, peaked at day 28, and then declined to somewhat higher than fetal levels at day 60. Cytidylyltransferase activity varied from the phosphatidylinositol synthesizing enzyme in that specific activity continued to increase up to day 60. Whole brain phosphatidylinositol transfer specific activity showed a sharp peak at postnatal day 9 after which activity was maintained at or above the fetal levels to day 60. Cerebellum phosphatidylinositol transfer specific activity had a similar peak which was delayed 7-10 days compared to the whole brain. Phosphatidylinositol transfer protein was also determined immunologically: whole brain levels increased dramatically from fetal day 16 to 18 and then remained relatively constant, while cerebellum levels (measured from postnatal day 7) displayed a variable profile between days 7 and 28. The developmental pattern of CTP:phosphatidate cytidylyltransferase in rat brain is reported here for the first time.  相似文献   

3.
Olfactory bulbs (OBs) are one of the few brain areas, which show active neurogenesis and neuronal migration processes in adult rats. We constructed a proteome map of the 21 days old rat OBs and identified total 196 proteins, out of which 76 proteins were not reported earlier from rat brain. This includes 24 neuronal activity‐specific proteins present at high levels, 7 of which are reported for the first time from OBs.  相似文献   

4.
The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.  相似文献   

5.
NONHISTONE NUCLEAR PROTEINS OF RAT BRAIN   总被引:1,自引:0,他引:1  
Abstract— The rat brain was dissected into cerebral cortex, cerebellum and the remaining regions. From the nuclei, isolated from these three brain sections, were extracted two fractions of nuclear sap proteins (proteins soluble in 014 M NaCl and proteins soluble in 01 M Tris-HCl buffer pH 7-6) and two fractions of nonhistone chromosomal proteins (one soluble in 0-35 M NaCl and one which is not soluble at this salt concentration). Each of these four fractions of the nonhistone nuclear proteins was further separated by polyacrylamide gel electrophoresis. The electrophoretic patterns of the studied fractions of nuclear proteins are qualitatively identical regardless of the brain section from which the analysed protein fraction was isolated. In addition, there arc no qualitative differences in the electrophoretic patterns of nonhistone chromosomal proteins which are and which are not soluble in 0-35 M NaCl. In contrast to the qualitative similarity of the electrophoretic patterns of proteins from different sections of the brain, the amount of the nonhistone nuclear proteins is characteristic for each studied brain section. The ratio of the total nonhistone nuclear proteins to DNA is highest in the brain cortex and lowest in the cerebellum. The most expressed difference between the nuclei is in the ratio of the nonhistone chromosomal proteins soluble in 0-35 M NaCl to DNA. This ratio is 0-52 in the cortex. 0-38 in the mixture of noncortical and noncerebel-lar regions and only 0-18 in the cerebellum. The amount of the three fractions of nonhistone nuclear proteins in the nuclei of individual brain sections is proportional to the activity of the genome in these nuclei. The only exception are the nonhistone chromosomal proteins which are not soluble in 0-35 M NaCl. These proteins and the histones are present in the same amounts in nuclei isolated from all three studied sections of the brain. The results support a proposal that the nonhistone nuclear proteins are involved in the expression of the genetic activity of the cell, without the majority of the proteins in any of the four fractions being the specific regulatory molecules.  相似文献   

6.
7.
Insulin Binding in Four Regions of the Developing Rat Brain   总被引:6,自引:5,他引:1  
Specific insulin binding has been demonstrated in partially purified membranes prepared from four regions of the developing rat brain. Insulin binding to brain membranes demonstrated kinetics and hormonal specificity that were quite similar to those reported for traditional insulin target tissues (e.g., liver and adipose tissue), and binding was significantly correlated with receptor concentration. Binding in the olfactory bulbs, cerebrum, cerebellum, and hypothalamus all reached highest values at 15 days of postnatal life, with the olfactory bulbs generally showing the greatest binding at all ages studied. A temporal relationship was found between insulin binding to brain membranes in the postnatal rat and plasma membrane protein synthesis, especially in the cerebellum and olfactory bulbs.  相似文献   

8.
9.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

10.
Abstract

Three monoclonal antibodies were used to examine with immunocytochemistry the distribution of the glycine receptors and the related 93kd polypeptide in the adult goldfish brain (Carassius auratus). One immunoglobulin recognizes the 48kd strychnine-binding subunit of the receptor and the two others bind to the peripheral 93kd polypeptide which is coupled to the receptor molecules. Immunofluorescent spots were visualised with all three antibodies on the somatic and dendritic membrane of the cells.

A differential intensity of immunofluorescence was detected in the three different brain regions examined: the brainstem, the cerebellum and the telencephalon. For both proteins, the highest fluorescence was observed in the brainstem, particularly on reticular and vestibular neurons. In the cerebellum both the density and the intensity of labelling was low. At the level of the Mauthner cell, an identified bulbar command neuron, the distribution of glycinergic receptors was identical with that of the 93kd polypeptide. Both subunits were visualized on the somatic and dendritic membrane up to their extremities.

These proteins appear to be colocalized in neurons other than the Mauthner cell, since they are always co-expressed in the same brain region. Their distributions are comparable with that observed in the mouse and rat nervous system as reported from autoradiographic localization of [3H] strychnine binding.  相似文献   

11.
12.
13.
Monoclonal antibodies (mAb) and a polyclonal antiserum were produced against a kainic acid receptor (KAR) purified from frog brain. Several of the mAb and the antiserum immunoprecipitated [3H]kainic acid binding activity from solubilized preparations of frog brain and labeled a group of proteins on immunoblots that migrated at Mr = 48,000. These results confirm that the ligand binding subunit of the frog brain KAR is contained in the Mr = 48,000 proteins. Immunoblots from different frog tissues demonstrated that the antibody reactivity was highly concentrated in the frog nervous system with no detectable immunoreactivity observed in non-neuronal tissues. The purified KAR was radioiodinated and subjected to two-dimensional gel electrophoresis and autoradiography. A series of proteins was detected at Mr = 48,000 with isoelectric points from 5.5 to 6.3. The anti-KAR mAb and the antiserum reacted with the same group of proteins from frog whole brain after separation by two-dimensional gel electrophoresis. Peptide maps of the 125I-labeled KAR separated by two-dimensional gel electrophoresis demonstrated that the group of proteins clustered at Mr = 48,000 is homologous. mAb KAR-B1 reacted on immunoblots with a protein in rat brain with a Mr = 99,000. This protein comigrated with an unreduced form of the KAR in frog brain. It was present in rat cerebral cortex, hippocampus, and cerebellum but was not detected in thalamus, globus pallidus, or brain stem, nor was it detected in rat non-neuronal tissues. The presence of the Mr = 99,000 immunoreactive polypeptide in discrete areas of rat brain suggests that this protein may be part of a mammalian KAR or a related receptor.  相似文献   

14.
Chronic exposure to CP55,940 produced a significant down-regulation of cannabinoid receptors in the striatum, cortex, hippocampus, and cerebellum of rat brain. At 24 h after SR141716-precipitated withdrawal, we observed a tendency to return to basal levels in the striatum and cortex, whereas the specific binding remained lower in the hippocampus and cerebellum. When we surveyed cannabinoid receptor-activated G proteins, in chronic CP55,940-treated rats the guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding assay revealed a decrease of activated G proteins in the striatum, cortex, and hippocampus, whereas no significant changes were seen in the cerebellum. At 24 h after the SR141716-precipitated withdrawal, [(35)S]GTPgammaS binding increased compared with that of rats chronically exposed to CP55,940, attaining the control level except for cerebellum, where we observed a trend to overcome the control amounts. Concerning the cyclic AMP (cAMP) cascade, which represents the major intracellular signaling pathway activated by cannabinoid receptors, in the cerebral areas from rats chronically exposed to CP55,940 we found alteration in neither cAMP levels nor protein kinase A activity. In the brain regions taken from CP55, 940-withdrawn rats, we only observed a significant up-regulation in the cerebellum. Our findings suggest that receptor desensitization and down-regulation are strictly involved in the development of cannabinoid tolerance, whereas alterations in the cAMP cascade in the cerebellum could be relevant in the mediation of the motor component of cannabinoid abstinence.  相似文献   

15.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   

16.
The synthesis and characterization of a novel opioid receptor photoaffinity probe [3H]naltrexyl urea phenylazido derivative ([3H]NUPA) is described. In the absence of light, [3H]NUPA binds with high affinity in a reversible and saturable manner to rat brain and guinea pig cerebellum membranes. Dissociation constants and binding capacities (Scatchard plots) are 0.11 nM and 250 fmol/mg of protein for rat brain and 0.24 nM and 135 fmol/mg of protein for guinea pig cerebellum. Competition experiments indicate that this ligand interacts with high affinity at both mu- and kappa-opioid binding sites while exhibiting low affinity at delta sites (Ki = 21 nM). On irradiation, [3H]NUPA incorporates irreversibly into rat brain and guinea pig cerebellum membranes. SDS gel electrophoresis of rat brain membranes reveals specific photolabeling of a 67-kDa molecular mass band. Conversely, a major component of 58 kDa and a minor component of 36 kDa are obtained from [3H]NUPA-labeled guinea pig cerebellum membranes. Different photolabeling patterns are obtained in rat brain (mu/delta/kappa, 4/5/1) and guinea pig cerebellum (mu+delta/kappa, 1,5/8,5) membranes in the presence of selective opioid ligands indicating labeling of mu and kappa sites, respectively. Thus, [3H]NUPA behaves as an efficient photoaffinity probe of mu- and kappa-opioid receptors, which are probably represented by distinct glycoproteins of 67 and 58 kDa, respectively.  相似文献   

17.
In some patients with paraneoplastic cerebellar degeneration (PCD), autoantibodies against neural components have been identified. Here, we demonstrate a major 58 kd protein antigen in an immunoblot of human cerebellum by serum from a patient with PCD. Immunohistochemically, the serum recognized neural cells especially Purkinje cells in a human brain. To identify the details of the target antigens for the antibody, we isolated a cDNA clone from a human cerebellar library. Homology searches revealed a similarity with the zinc finger proteins. PCD related proteins reported here may be important to maintain neural cells especially those in the cerebellum, and further studies on this molecule may help us elucidate the causes of degenerative or autoimmune diseases in the cerebellum.  相似文献   

18.
Age-dependent changes in the distribution of microtubule-associated proteins (MAPs) were analyzed in young (3-months, N = 3) and old (24-months, N = 3) rat brain. In the young rats, MAP1 and MAP5 exhibited prominent immunostaining in the perikarya and dendrites whereas MAP2 was selectively localized in the dendrites. In the cerebellum, MAP2 was preferentially localized in finer and distal branches of Purkinje cell dendrites and in punctate deposits surrounding glomeruli. In general, aging resulted in obvious declines in MAP2- >> MAP1- and MAP5-immunoreactivities in the hippocampus and parietal cortex but no change in cerebellum. The results indicate that: (1) hippocampus is the most affected and cerebellum is the least affected region with regard to declines in MAPs-immunoreactivities in the aged rat brain; (2) dendrite-specific MAP2 is almost completely depleted from most dendrites in the hippocampus and cortex. In summary, loss of MAP2-immunoreactivity in the affected brain areas may be associated with age-related impairment of synaptic plasticity, cognition and memory functions.  相似文献   

19.
Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2?mg/kg/day i.p. for 4?weeks. Experimental rats were given C. dactylon extract in two different doses of 300?mg and 750?mg/keg/day orally 1?h prior to the AlCl(3) administration for 4?weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750?mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.  相似文献   

20.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号