首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoglobin (Cgb) and neuroglobin (Ngb) are the first examples of hexacoordinated globins from humans and other vertebrates in which a histidine (His) residue at the sixth position of the heme iron is an endogenous ligand in both the ferric and ferrous forms. Static and time-resolved resonance Raman and FT-IR spectroscopic techniques were applied in examining the structures in the heme environment of these globins. Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy of transient five-coordinate heme species produced by the photolysis of carbon monoxide (CO) adducts of Cgb and Ngb showed Fe-His stretching (nu(Fe-His)) bands at 229 and 221 cm(-1), respectively. No time-dependent shift in the nu(Fe-His) band of Cgb and Ngb was detected in the 20-1000 ps time domain, in contrast to the case of myoglobin (Mb). These spectroscopic data, combined with previously reported crystallographic data, suggest that the structure of the heme pocket in Cgb and Ngb is altered upon CO binding in a manner different from that of Mb and that the scales of the structural alteration are different for Cgb and Ngb. The structural property of the heme distal side of the ligand-bound forms was investigated by observing the sets of (nu(Fe-CO), nu(C-O), delta(Fe-C-O)) and (nu(Fe-NO), nu(N-O), delta(Fe-N-O)) for the CO and nitric oxide (NO) complexes of Cgb and Ngb. A comparison of the spectra of some distal mutants of Cgb (H81A, H81V, R84A, R84K, and R84T) and Ngb (H64A, H64V, K67A, K67R, and K67T) showed that the CO adducts of Cgb and Ngb contained three conformers and that the distal His (His81 in Cgb and His64 in Ngb) mainly contributes to the interconversion of the conformers. These structural characteristics of Cgb and Ngb are discussed in relation to their ligand binding and physiological properties.  相似文献   

2.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

3.
Globins are respiratory proteins that reversibly bind dioxygen and other small ligands at the iron of a heme prosthetic group. Hemoglobin and myoglobin are the most prominent members of this protein family. Unexpectedly a few years ago a new member was discovered and called neuroglobin (Ngb), being predominantly expressed in the brain. Ngb is a single polypeptide of 151 amino acids and despite the small sequence similarity with other globins, it displays the typical globin fold. Oxygen, nitric oxide, or carbon monoxide can displace the distal histidine which, in ferrous Ngb as well as in ferric Ngb, is bound to the iron, yielding a reversible adduct. Recent crystallographic data on carboxy Ngb show that binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities; in particular, the huge internal tunnel that connects the bulk with the active site, peculiar to Ngb, is heavily reorganized. We report the results of extended (90 ns) molecular dynamics simulations in water of ferrous deoxy and carboxy murine neuroglobin, which are both coordinated on the distal site, in the latter case by CO and in the former one by the distal His(64)(E7). The long timescale of the simulations allowed us to characterize the equilibrated protein dynamics and to compare protein structure and dynamical behavior coupled to the binding of an exogenous ligand. We have characterized the heme sliding motion, the topological reorganization of the internal cavities, the dynamics of the distal histidine, and particularly the conformational change of the CD loop, whose flexibility depends ligand binding.  相似文献   

4.
Neuroglobin (Ngb) is a monomeric protein that, despite the small sequence similarity with other globins, displays the typical globin fold. In the absence of exogenous ligands, the ferric and the ferrous forms of Ngb are both hexacoordinated to the distal and proximal histidines. In the ferrous form, oxygen, nitric oxide or carbon monoxide can displace the distal histidine, yielding a reversible adduct. Crystallographic data show that the binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities. Molecular dynamics (MD) simulations in solution show that the heme oscillates between two positions, much as the ones observed in the crystal structure, although the occupancy is different. The simulations also suggest that ligand binding in solution can affect the flexibility and conformation of residues connecting the C and D helices, referred to as the CD corner, which is coupled to the configuration adopted by the distal histidine. In this study, we report the results of 30 ns MD simulations of CO-bound Ngb in the crystal. Our goal was to compare the protein dynamical behavior in the crystal with the results supplied by the previous MD simulation of CO-bound Ngb in solution and the x-ray experimental data. The results show that the different environments (crystal or solution) affect the dynamics of the heme group and of the CD corner.  相似文献   

5.
We have examined the effects of active site residues on ligand binding to the heme iron of mouse neuroglobin using steady-state and time-resolved visible spectroscopy. Absorption spectra of the native protein, mutants H64L and K67L and double mutant H64L/K67L were recorded for the ferric and ferrous states over a wide pH range (pH 4-11), which allowed us to identify a number of different species with different ligands at the sixth coordination, to characterize their spectroscopic properties, and to determine the pK values of active site residues. In flash photolysis experiments on CO-ligated samples, reaction intermediates and the competition of ligands for the sixth coordination were studied. These data provide insights into structural changes in the active site and the role of the key residues His64 and Lys67. His64 interferes with exogenous ligand access to the heme iron. Lys67 sequesters the distal pocket from the solvent. The heme iron is very reactive, as inferred from the fast ligand binding kinetics and the ability to bind water or hydroxyl ligands to the ferrous heme. Fast bond formation favors geminate rebinding; yet the large fraction of bimolecular rebinding observed in the kinetics implies that ligand escape from the distal pocket is highly efficient. Even slight pH variations cause pronounced changes in the association rate of exogenous ligands near physiological pH, which may be important in functional processes.  相似文献   

6.
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.  相似文献   

7.
Cytoglobin (Cgb), the fourth member of the vertebrate heme globin family, is widely expressed in mammalian tissues, and reversibly binds to CO, O2 and other small ligands. The diverse functions of Cgb may include ligand transport, redox reactions and enzymatic catalysis. Recent studies indicate that Cgb is a potential gene medicine for fibrosis and cancer therapy. In the present work, molecular dynamics (MD) simulations were performed to investigate the functionally related structural properties and dynamic characteristics in carboxy and deoxy human Cgb. The simulation results showed that the loop regions and internal cavities were significantly affected through the binding of an exogenous ligand. The AB, GH and EF loops were found to undergo significant rearrangement and this led to distinct cavity adjustments in Xe2, Xe4 and the distal pocket. In addition, solvent accessibility and torsion angle analyses revealed an interactive distal network comprised of His81(E7), Leu46(B10) and Arg84(E10). The MD study of carboxy and deoxy human Cgb revealed that CO-ligated Cgb modulates the protein conformation primarily by loop and cavity rearrangements rather than the heme sliding mechanism found in neuroglobin (Ngb). The significant differences between Cgb and Ngb in the loop and cavity properties are presumably linked to their various biological functions.  相似文献   

8.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

9.
Neuroglobin (Ngb) is a recently discovered protein that shows only minor sequence similarity with myoglobin and hemoglobin but conforms to the typical 3-over-3 alpha-helical fold characteristic of vertebrate globins. An intriguing feature of Ngb is its heme hexacoordination in the absence of external ligands, observed both in the ferrous and in the ferric (met) forms. In Ngb, the imidazole of a histidine residue (His-64) in the distal position, above the heme plane, provides the sixth coordination bond. In this work, a valine residue was introduced at position 64 (H64V variant) to clarify the possible role(s) of the distal residue in protecting the heme iron of Ngb from attack by strong oxidants. SDS-PAGE analyses revealed that the oxidation of the H64V variant of metNgb by H 2O 2 resulted in the formation of dimeric and trimeric products in contrast to the native protein. Dityrosine cross-links were shown by their fluorescence to be present in the oligomeric products. When the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was included in the reaction mixture, nitrone adducts were detected by immuno-spin trapping. The specific location of the DMPO adducts on the H64V variant protein was determined by a mass spectrometry method that combines off-line immuno-spin trapping and chromatographic procedures. This method revealed Tyr-88 to be the site of modification by DMPO. The presence of His-64 in the wild-type protein results in the nearly complete loss of detectable radical adducts. Together, the data support the argument that wild-type Ngb is protected from attack by H 2O 2 by the coordinated distal His.  相似文献   

10.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

11.
We have measured the rebinding of carbon monoxide (CO) to some distal mutants of myoglobin (Mb) in the time range from 10(-8) to 10(-1) s by flash photolysis, in which the photodissociated CO rebinds to the heme iron without escaping to the solvent water from the protein matrix. We have found that the double mutants [His64-->Val/Val68-->Thr (H64V/V68T) and His64-->Val/Val68-->Ser (H64V/V68S)] have an extremely large geminate yield (70-80%) in water at 5 degreesC, in contrast to the 7% of the geminate yield of wild-type Mb. The CO geminate yields for these two mutants are the largest in those of Mb mutants reported so far, showing that the two mutants have a unique heme environment that favors CO geminate rebinding. Comparing the crystal structures and 1H-NMR and vibrational spectral data of H64V/V68T and H64V/V68S with those of other mutants, we discuss factors that may control the nanosecond geminate CO rebinding and CO migration in the protein matrix.  相似文献   

12.
Structural basis of human cytoglobin for ligand binding   总被引:3,自引:0,他引:3  
Cytoglobin (Cgb), a newly discovered member of the vertebrate globin family, binds O(2) reversibly via its heme, as is the case for other mammalian globins (hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb)). While Cgb is expressed in various tissues, its physiological role is not clearly understood. Here, the X-ray crystal structure of wild type human Cgb in the ferric state at 2.4A resolution is reported. In the crystal structure, ferric Cgb is dimerized through two intermolecular disulfide bonds between Cys38(B2) and Cys83(E9), and the dimerization interface is similar to that of lamprey Hb and Ngb. The overall backbone structure of the Cgb monomer exhibits a traditional globin fold with a three-over-three alpha-helical sandwich, in which the arrangement of helices is basically the same among all globins studied to date. A detailed comparison reveals that the backbone structure of the CD corner to D helix region, the N terminus of the E-helix and the F-helix of Cgb resembles more closely those of pentacoordinated globins (Mb, lamprey Hb), rather than hexacoordinated globins (Ngb, rice Hb). However, the His81(E7) imidazole group coordinates directly to the heme iron as a sixth axial ligand to form a hexcoordinated heme, like Ngb and rice Hb. The position and orientation of the highly conserved residues in the heme pocket (Phe(CD1), Val(E11), distal His(E7) and proximal His(F8)) are similar to those of other globin proteins. Two alternative conformations of the Arg84(E10) guanidium group were observed, suggesting that it participates in ligand binding to Cgb, as is the case for Arg(E10) of Aplysia Mb and Lys(E10) of Ngb. The structural diversities and similarities among globin proteins are discussed with relevance to molecular evolutionary relationships.  相似文献   

13.
Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.  相似文献   

14.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

15.
Neuroglobin, a new member of hemoprotein family, can reversibly bind oxygen and take part in many biological processes such as enzymatic reaction, signal transduction and the mitochondria function. Different from myoglobin and hemoglobin, it has a hexacoordinated heme environment, with histidyl imidazole of proximal His96(F8) and distal His64(E7) directly bound to the metal ion. In the present work, solution 1H NMR spectroscopy was employed to investigate the electronic structure of heme center of wild-type met-human neuroglobin. The resonances of heme protons and key residues in the heme pocket were assigned. Two heme orientations resulting from a 180° rotation about the α-γ-meso axis with a population ratio about 2:1 were observed. Then the 1H NMR chemical shifts of the ferriheme methyl groups were used to predict orientations of the axial ligand. The obtained axial ligand plane angle φ is consistent with that from the molecular dynamics simulation but not with those from the crystal data. Compared with mouse neuroglobin, the obtained average ligand orientation of human neuroglobin reflects the changeability of heme environment for the Ngb family.  相似文献   

16.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A(0) and A(3), which can be distinguished by their different CO bands near 1965 and 1933 cm(-1). They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C', in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C") has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at approximately 180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C', C", and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C') is severely restricted by introduction of the bulky Phe side chain at position 107.  相似文献   

18.
Neuroglobin, a member of vertebrate globin family, is distributed primarily in the brain and retina. Considerable evidence has accumulated regarding its unique ligand-binding properties, neural-specific distribution, distinct expression regulation, and possible roles in processes such as neuron protection and enzymatic metabolism. Structurally, neuroglobin enjoys unique features, such as bis-histidyl coordination to heme iron in the absence of exogenous ligand, heme orientational heterogeneity, and a heme sliding mechanism accompanying ligand binding. In the present work, molecular dynamics (MD) simulations were employed to reveal functional and structural information in three carboxyl murine neuroglobin mutants with single point mutations F106Y, F106L and F106I, respectively. The MD simulation indicates a remarkable proximal effect on detectable displacement of heme and a larger tunnel in the protein matrix. In addition, the mutation at F106 confers on the CD region a very sensitive mobility in all three model structures. The dynamic features of neuroglobin demonstrate rearrangement of the inner space and highly active loop regions in solution. These imply that the conserved residue at the G5 site plays a key role in the physiological function of this unusual protein.  相似文献   

19.
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide.  相似文献   

20.
The sea hare Aplysia limacina possesses a myoglobin in which a distal H-bond is provided by Arg E10 rather than the common His E7. Solution (1)H NMR studies of the cyanomet complexes of true wild-type (WT), recombinant wild-type (rWT), and the V(E7)H/R(E10)T and V(E7)H mutants of Aplysia Mb designed to mimic the mammalian Mb heme pocket reveal that the distal His in the mutants is rotated out of the heme pocket and is unable to provide a stabilizing H-bond to bound ligand and that WT and rWT differ both in the thermodynamics of heme orientational disorder and in heme contact shift pattern. The mean of the four heme methyl shifts is shown to serve as a sensitive indicator of variations in distal H-bonding among a set of mutant cyanomet globins. The heme pocket perturbations in rWT relative to WT were traced to the absence of the N-terminal acetyl group in rWT that participates in an H-bond to the EF corner in WT. Analysis of dipolar contacts between heme and axial His and between heme and the protein matrix reveal a small approximately 2 degrees rotation of the axial His in rWT relative to true WT and a approximately 3 degrees rotation of the heme in the double mutant relative to rWT Mb. It is demonstrated that both the direction and magnitude of the rotation of the axial His relative to the heme can be determined from the change in the pattern of the contact-dominated heme methyl shift and from the dipolar-dominated heme meso-H shift. However, only NOE data can determine whether it is the His or heme that actually rotates in the protein matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号