首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pilsl LK  Reiser O 《Amino acids》2011,41(3):709-718
Interplay between proteins, nucleic acids, carbohydrates and/or lipids is involved in almost every process in life on earth. As a consequence, a wide range of diseases results from abnormal interactions of such biomolecules. The main motivation of foldamer science is the development of scaffolds that are capable of adopting defined structures, mimicking parts of biological protagonists in their function. Among the most fundamental interactions in living beings are those between proteins, the so called protein–protein interactions (PPIs). Therefore, peptidic foldamers bear the promise to be an important tool for the inhibition of PPIs, as they are structurally most similar to the original proteins. The great number of possible permutations given by the combination of proteinogenic α-amino acid residues along with β-amino acids opens the door for a larger pool of accessible structures with potential applications. Despite the increasing amount of new secondary structure motifs, only few examples for tertiary and quaternary structure design, as well as inhibition of PPIs, have been realized so far. In this review, we summarize the current knowledge and recent progress made in the field of α/β-peptide foldamers beginning from secondary structure design up to highly sophisticated biological applications, such as protein surface recognition and inhibition of HIV cell entry.  相似文献   

2.
The (β/α)8-barrel is one of the most common folds functioning as enzymes. The emergence of two (β/α)8-barrel enzymes involved in histidine biosynthesis, each of which has a twofold symmetric structure, has been proposed to be a consequence of tandem duplication and fusion of a (β/α)4-half-barrel. However, little evidence has been found for the existence of an ancestral half-barrel in the evolution of other (β/α)8-barrel proteins. In order to detect remnants of an ancestral half-barrel in the (β/α)8-barrel structure of Escherichia coli N-(5′-phosphoribosyl)anthranilate isomerase, we engineered three potential half-barrel units, (β/α)1-4, (β/α)3-6, and (β/α)5-8. Among these three arrangements, only (β/α)3-6 is stable; it exists in equilibrium between monomeric and dimeric forms. Thus, the central segment of N-(5′-phosphoribosyl)anthranilate isomerase from E. coli can serve as a half-barrel precursor. A tandem duplication of (β/α)3-6 yielded predominantly monomeric structures that were quite stable. This result exemplified that the structural characteristics of noncovalently assembled half-barrels could be improved by duplication and fusion. Moreover, our results may provide information regarding the local structural units that encompass interactions important for the early folding events of this ubiquitous protein conformation.  相似文献   

3.
Protein engineering by directed evolution has proven effective in achieving various functional modifications, but the well-established protocols for the introduction of variability, typically limited to random point mutations, seriously restrict the scope of the approach. In an attempt to overcome this limitation, we sought to explore variant libraries with richer diversity at regions recognized as functionally important through an exchange of natural components, thus combining design with combinatorial diversity. With this approach, we expected to maintain interactions important for protein stability while directing the introduction of variability to areas important for catalysis.Our strategy consisted in loop exchange over a (β/α)8 fold. Phosphoribosylanthranilate isomerase was chosen as scaffold, and we investigated its tolerance to loop exchange by fusing variant libraries to the chloramphenicol acetyl transferase coding gene as an in vivo folding reporter. We replaced loops 2, 4, and 6 of phosphoribosylanthranilate isomerase with loops of varied types and sizes from enzymes sharing the same fold.To allow for a better structural fit, saturation mutagenesis was adopted at two amino acid positions preceding the exchanged loop. Our results showed that 30% to 90% of the generated mutants in the different libraries were folded. Some variants were selected for further characterization after removal of chloramphenicol acetyl transferase gene, and their stability was studied by circular dichroism and fluorescence spectroscopy. The sequences of 545 clones show that the introduction of variability at “hinges” connecting the loops with the scaffold exhibited a noticeable effect on the appearance of folded proteins. Also, we observed that each position accepted foreign loops of different sizes and sequences.We believe our work provides the basis of a general method of exchanging variably sized loops within the (β/α)8 fold, affording a novel starting point for the screening of novel activities as well as modest diversions from an original activity.  相似文献   

4.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

5.
The (/)8 barrel proteins, in spite of having a common fold, do not show any sequence similarity. In order to understand the factors which are responsible for maintaining the common fold, the three-dimensional structures of 36 (/)8 barrel proteins are analyzed for the presence of identical amino acid clusters or physicochemically similar clusters. The results reveal 14 identical amino acid clusters and a large number of physicochemically similar clusters. Further analysis of the similar clusters points to the conservation of secondary structures, the presence of pairs of residues occupying topologically equivalent secondary structures, and the presence of certain key residues which may play a vital role in directing and stabilizing the (/)8 barrel fold.  相似文献   

6.
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)8 enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.  相似文献   

7.
Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.  相似文献   

8.
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.  相似文献   

9.
Protein structures are stabilized by both local and long-range interactions. In this work, we analyzed the importance of long-range interactions in (α/β)8 barrel proteins in terms of residue distances. We found that the residues occurring in the range of 21–30 residues apart contribute more toward long-range contacts. Indeed, about 50% of successive strands in these proteins are found to occur at a sequential distance of 21–30 residues. The aromatic amino acid residues Phe, Trp, and Tyr prefer the 4–10 range and all other residues prefer the 21–30 range. Hydrophobic-hydrophobic resideu pairs are the most preferred ones for long-range interactions and they may play a key role in the folding and stabilization of (α/β)8 barrel proteins.  相似文献   

10.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

11.
RANK ligand (RANKL), by mechanisms unknown, directly activates osteoclasts to resorb bone. Because c-Src is key to organizing the cell's cytoskeleton, we asked if the tyrosine kinase also mediates RANKL-stimulated osteoclast activity. RANKL induces c-Src to associate with RANK(369-373) in an αvβ3-dependent manner. Furthermore, RANK(369-373) is the only one of six putative TRAF binding motifs sufficient to generate actin rings and activate the same cytoskeleton-organizing proteins as the integrin. While c-Src organizes the cell's cytoskeleton in response to the cytokine, it does not participate in RANKL-stimulated osteoclast formation. Attesting to their collaboration, αvβ3 and activated RANK coprecipitate, but only in the presence of c-Src. c-Src binds activated RANK via its Src homology 2 (SH2) domain and αvβ3 via its SH3 domain, suggesting the kinase links the two receptors. Supporting this hypothesis, deletion or inactivating point mutation of either the c-Src SH2 or SH3 domain obviates the RANK/αvβ3 association. Thus, activated RANK prompts two distinct signaling pathways; one promotes osteoclast formation, and the other, in collaboration with c-Src-mediated linkage to αvβ3, organizes the cell's cytoskeleton.  相似文献   

12.
Functional screening of a metagenomic library constructed with DNA extracted from the rumen contents of a grass/hay-fed dairy cow identified a protein, β-glucosidase/β-xylosidase/α-arabinosidase gene (Bgxa1), with high levels of β-glucosidase activity. Purified Bgxa1 was highly active against p-nitrophenyl-β-d-glucopyranoside (pNPG), cellobiose, p-nitrophenyl-β-d-xylopyranoside (pNPX) and p-nitrophenyl-α-d-arabinofuranoside (pNPAf), suggesting it is a multifunctional β-glucosidase/β-xylosidase/α-arabinosidase. Kinetic analysis of the protein indicated that Bgxa1 has the greatest catalytic activity against pNPG followed by pNPAf and pNPX, respectively. The catalytic efficiency of β-glucosidase activity was 100× greater than β-xylosidase or α-arabinosidase. The pH and temperature optima for the hydrolysis of selected substrates also differed considerably with optima of pH 6.0/45 °C and pH 8.5/40 °C for pNPG and pNPX, respectively. The pH dependence of pNPAf hydrolysis displayed a bimodal distribution with maxima at both pH 6.5 and pH 8.5. The enzyme exhibited substrate-dependent responses to changes in ionic strength. Bgxa1 was highly stable over a broad pH range retaining at least 70 % of its relative catalytic activity from pH 5.0–10.0 with pNPG as a substrate. Homology modelling was employed to probe the structural basis of the unique specificity of Bgxa1 and revealed the deletion of the PA14 domain and insertions in loops adjacent to the active site. This domain has been found to be an important determinant in the substrate specificity of proteins related to Bgxa1. It is postulated that these indels are, in part, responsible for the multifunctional activity of Bgxa1. Bgxa1 acted synergistically with endoxylanase (Xyn10N18) when incubated with birchwood xylan, increasing the release of reducing sugars by 168 % as compared to Xyn10N18 alone. Examination of Bgxa1 and Xyn10N18 synergy with a cellulase for the saccharification of alkali-treated straw revealed that synergism among the three enzymes enhanced sugar release by 180 % as compared to cellulase alone. Our results suggest that Bgxa1 has a number of properties that make it an interesting candidate for the saccharification of lignocellulosic material.  相似文献   

13.
Carbohydrate structures between retinal neurons and retinal pigment epithelium (RPE) play an important role in maintaining the integrity of retinal adhesion to underlying RPE, and in retinal detachment pathogenesis. Since relevant knowledge is still in the primary stage, glycotopes on the adult retina of mongrel canines (dog), micropigs and Sprague-Dawley rats were examined by lectino-histochemistry, using a panel of 16 different lectins. Paraffin sections of eyes were stained with biotinylated lectins, and visualized by streptavidin-peroxidase and diaminobenzidine staining. Mapping the affinity profiles, it is concluded that: (i) all sections of the retina reacted well with Morniga M, suggesting that N-linked glycans are present in all layers of the retina; (ii) no detectable human blood group ABH active glycotopes were found among retinal layers; (iii) outer and inner segments contained glycoconjugates rich in ligands reacting with T α (Galβ1–3GalNAcα1-Ser/Thr) and Tn (GalNAcα1-Ser/Thr) specific lectins; (iv) cone cells of retina specifically bound peanut agglutinin (PNA), which recognizes T α residues and could be used as a specific marker for these photoreceptors; (v) the retinas of rat, dog and pig, had a similar binding profile but with different intensity; (vi) each retinal layer had its own binding characteristic. This information may provide useful background knowledge for normal retinal physiology and miscellaneous retinal diseases, including retinal detachment (RD) and age-related macular degeneration (ARMD).  相似文献   

14.
The neutral urinary excretion products of 17β-hydroxy-2α,3α-cyclopropano-5α-androstane from the rabbit, dosed orally, were investigated. Column chromatography yielded five crystalline metabolites which were identified by GLC and spectroscopic measurements. Three of these substances were hydroxylated in the 4α-position and one in the 6a-position with the cyclopropane ring intact. The fifth substance, 17β-hydroxy-3β-methyl-5α-androstan-2-one, can be derived from initial hydroxylation of the cyclopropane ring at C-2 followed by ring opening. The dosed substance and triol material was shown to be present by GLC and m.s. measurements. GLC determinations show that hydroxylation has occurred at C-4?C-6>C-2.  相似文献   

15.
A 4α-methylsterol was isolated from the seeds of Capsicum annuum and was identified as 4α-methyl-5α-cholest-8(14)-en-3β-ol. This seems to b  相似文献   

16.
17.
Anordrin, an antifertility agent that is an antiestrogen with weak estrogenic activity, has been studied to further characterize its hormonal activities. A dose of 2.0 μg/mouse·day for 7 days did not increase the uterine content of protein, but it did inhibit to a small extent the effect of administered estradiol-17β on uterine protein content and more significantly the effect of estradiol-17β on the uterine content of progesterone receptors. Anordrin also decreased serum corticosteroid-binding globulin levels. Administration of an average daily dose of 160 μg/day of anordrin to intact male mice had no effect on weights of kidney, testis, or seminal vesicle after 10 days, but seminal vesicle weight was significantly decreased after 30 days at a slightly lower dose. Similarly, anordrin inhibited the increase in seminal vesicle weight induced by testosterone propionate treatment of castrated mice. In female mice anordrin failed to maintain deciduomata and blocked the ability of progesterone (2.0 mg/mouse·day) to do so. However, anordrin did not compete with the androgen [3H]R1881 for binding in kidney cytosol or with the progestin [3H]R5020 for uterine receptor sites. Anordrin also did not compete with [3H]corticosterone for binding to serum proteins.  相似文献   

18.
Cellulosomes are large extracellular multi-enzyme complexes that exhibit elevated activity on plant cell-wall polysaccharides. In the present study, the relationships between the conformational flexibility and efficacy of cellulosomes, and the inter-modules linkers of their scaffold protein were investigated. For this purpose, the length of the intrinsically disordered Ser/Thr-rich 50-residue linker connecting a Clostridium thermocellum and a Clostridium cellulolyticum cohesin in a hybrid scaffoldin (Scaf4) was changed by sequences ranging from 4 to 128 residues. The composition was also modified and new linkers composed of series of N, S or repeats of the EPPV motif were generated. Two model cellulases (Cel48F and Cel9G) appended with appropriate dockerins were subsequently bound to the engineered scaffoldins. All the resulting minicomplexes displayed the same activity on crystalline cellulose as the complex based on the initial Scaf4, and were found to be 2-fold more active than Cel48F and Cel9G bound to separate cohesins. Small-angle X-ray scattering assays of the engineered scaffoldins confirmed, however, that the size and the conformational flexibility of some of the new inter-cohesins linkers differed significantly from that of the initial 50 residue linker displayed by the parental Scaf4. Our data suggest that the synergy induced by proximity does not require a specific inter-cohesins sequence or distance. The present study reveals that complexation onto the hybrid scaffoldins modifies the type of soluble sugars released from crystalline cellulose by the selected cellulases, compared to the free enzyme system.  相似文献   

19.
We have previously reported that spectrin increases dramatically in amount and is assembled into the cytoskeleton in differentiating keratinocytes both in vitro and in vivo (Zhao et al., PLoS ONE 6 (12) (2011) e28267). We demonstrate here that extracellular calcium (Ca2+) enhances differentiation of keratinocytes and that this is associated with increased spectrin expression and formation of a spectrin-based cytoskeleton. While Retinoic acid (RA) also enhanced keratinocyte differentiation, it abrogated the spectrin-based cytoskeleton in keratinocytes. Furthermore, RA substantially inhibited expression of both Src and PI3K-p85α and consequently the amounts of specific phosphorylation of both of these proteins. RA also enhanced AKT expression and dramatically induced phosphorylation of AKT(Thr308), accompanied by phosphorylation of both PKCδ(Thr505) and β-adducin(Ser662) and upregulated cyclin D2 and down-regulated cyclin B1. On the other hand, Ca2+ overcame the inhibitory effects of RA on expression of Src, PI3K-p85α and cyclin B1 by maintaining high levels of phosphorylation of both Src(Tyr527) and PI3K-p85α and preventing phosphorylation of AKT(Thr308), PKCδ(Thr505) and β-adducin(Ser662). These data highlight the importance of Ca2+ in both spectrin expression and the organizational integrity of the spectrin-based cytoskeleton in differentiating keratinocytes and assist in elucidating the signalling pathways involved.  相似文献   

20.
Integrin αIIbβ3 is a member of the integrin family of transmembrane proteins present on the plasma membrane of platelets. Integrin αIIbβ3 is widely known to regulate the process of thrombosis via activation at its cytoplasmic side by talin and interaction with the soluble fibrinogen. It is also reported that three groups of interactions restrain integrin family members in the inactive state, including a set of salt bridges on the cytoplasmic side of the transmembrane domain of the integrin α- and β-subunits known as the inner membrane clasp, hydrophobic packing of a few transmembrane residues on the extracellular side between the α- and β-subunits that is known as the outer membrane clasp, and the key interaction group of the βA domain (located on the β-subunit head domain) with the βTD (proximal to the plasma membrane on the β-subunit). However, molecular details of this key interaction group as well as events that lead to detachment of the βTD and βA domains have remained ambiguous. In this study, we use molecular dynamics models to take a comprehensive outside-in and inside-out approach at exploring how integrin αIIbβ3 is activated. First, we show that talin’s interaction with the membrane-proximal and membrane-distal regions of integrin cytoplasmic-transmembrane domains significantly loosens the inner membrane clasp. Talin also interacts with an additional salt bridge (R734-E1006), which facilitates integrin activation through the separation of the integrin’s α- and β-subunits. The second part of our study classifies three types of interactions between RGD peptides and the extracellular domains of integrin αIIbβ3. Finally, we show that the interaction of the Arg of the RGD sequence may activate integrin via disrupting the key interaction group between K350 on the βA domain and S673/S674 on the βTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号