首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

2.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

3.
Topoisomerases, by controlling DNA supercoiling state, are key enzymes for adaptation to high temperatures in thermophilic organisms. We focus here on the topoisomerase I from the hyperthermophilic bacterium Thermotoga maritima (optimal growth temperature, 80 degrees C). To determine the properties of the enzyme compared with those of its mesophilic homologs, we overexpressed T. maritima topoisomerase I in Escherichia coli and purified it to near homogeneity. We show that T. maritima topoisomerase I exhibits a very high DNA relaxing activity. Mapping of the cleavage sites on a variety of single-stranded oligonucleotides indicates a strong preference for a cytosine at position -4 of the cleavage, a property shared by E. coli topoisomerase I and archaeal reverse gyrases. As expected, the mutation of the putative active site Tyr 288 to Phe led to a totally inactive protein. To investigate the role of the unique zinc motif (Cys-X-Cys-X(16)-Cys-X-Cys) present in T. maritima topoisomerase I, experiments have been performed with the protein mutated on the tetracysteine motif. Strikingly, the results show that zinc binding is not required for DNA relaxation activity, contrary to the E. coli enzyme. Furthermore, neither thermostability nor cleavage specificity is altered in this mutant. This finding opens the question of the role of the zinc-binding motif in T. maritima topoisomerase I and suggests that this hyperthermophilic topoisomerase possesses a different mechanism from its mesophilic homolog.  相似文献   

4.
Accumulation of mutant topoisomerase I cleavage complex can lead to SOS induction and cell death in Escherichia coli. The single-stranded break associated with mutant topoisomerase I cleavage complex is converted to double-stranded break, which then is processed by the RecBCD pathway, followed by association of RecA with the single-stranded DNA.  相似文献   

5.
BACKGROUND: DNA topoisomerases are enzymes that change the topology of DNA. Type IA topoisomerases transiently cleave one DNA strand in order to pass another strand or strands through the break. In this manner, they can relax negatively supercoiled DNA and catenate and decatenate DNA molecules. Structural information on Escherichia coli DNA topoisomerase III is important for understanding the mechanism of this type of enzyme and for studying the mechanistic differences among different members of the same subfamily. RESULTS: The structure of the intact and fully active E. coli DNA topoisomerase III has been solved to 3.0 A resolution. The structure shows the characteristic fold of the type IA topoisomerases that is formed by four domains, creating a toroidal protein. There is remarkable structural similarity to the 67 kDa N-terminal fragment of E. coli DNA topoisomerase I, although the relative arrangement of the four domains is significantly different. A major difference is the presence of a 17 amino acid insertion in topoisomerase III that protrudes from the side of the central hole and could be involved in the catenation and decatenation reactions. The active site is formed by highly conserved amino acids, but the structural information and existing biochemical and mutagenesis data are still insufficient to assign specific roles to most of them. The presence of a groove in one side of the protein is suggestive of a single-stranded DNA (ssDNA)-binding region. CONCLUSIONS: The structure of E. coli DNA topoisomerase III resembles the structure of E. coli DNA topoisomerase I except for the presence of a positively charged loop that may be involved in catenation and decatenation. A groove on the side of the protein leads to the active site and is likely to be involved in DNA binding. The structure helps to establish the overall mechanism for the type IA subfamily of topoisomerases with greater confidence and expands the structural basis for understanding these proteins.  相似文献   

6.
Identification of a potent decatenating enzyme from Escherichia coli   总被引:20,自引:0,他引:20  
A topoisomerase has been purified from extracts of a topoisomerase I-deficient strain of Escherichia coli based solely on its ability to segregate pBR322 DNA replication intermediates in vitro. This enzyme rapidly decatenated multiply linked form II:form II DNA dimers to form II DNA, provided that the DNA substrate contained single-stranded regions. Efficient relaxation of negatively supercoiled DNA was observed when reaction mixtures were incubated at 52 degrees C, but not at 30 degrees C (the temperature at which decatenation was readily observed). This topoisomerase was insensitive to the DNA gyrase inhibitor norfloxacin and unaffected by antibody directed against topoisomerase I. Relaxation of a unique plasmid topoisomer revealed that this decatenase changed the linking number of the DNA in steps of one and was therefore a type 1 topoisomerase. The cleavage pattern of a fragment of single-stranded phi X174 DNA generated by this decatenase was virtually identical to that reported for topoisomerase III, the least characterized topoisomerase present in E. coli.  相似文献   

7.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

8.
Limited digestion of E. coli DNA topoisomerase I with trypsin or papain generated a DNA-binding domain of MW 14,000 corresponding to the carboxyl terminal of the enzyme. This fragment binds to single-stranded DNA agarose as tightly as the intact enzyme. It required around 400 mM NaCl for elution. A truncated topoisomerase that lacks this C-terminal domain was purified. It was eluted from the single-stranded DNA agarose column at around 150 mM NaCl. Although the truncated enzyme could relax negatively supercoiled DNA as efficiently as the intact enzyme at low ionic strength, its processivity was more sensitive to increasing salt concentration. Measurement of binding to fluorescent etheno-M13 DNA also demonstrated that the presence of the C-terminal domain confers higher affinity to DNA for the enzyme.  相似文献   

9.
Calf thymus DNA topoisomerase I, which belongs to the eukaryotic type I topoisomerases, is in a typical preparation purified as a set of five major polypeptides with Mr between 70000 and 100000. At least four of these proteins have binding affinity for DNA as was shown by incubating them with radioactive single-stranded DNA after separation in dodecylsulfate polyacrylamide gels and blotting onto nitrocellulose filters. That these polypeptides have DNA relaxing activity was directly demonstrated with protein extracted from single bands of dodecylsulfate/polyacrylamide gels. We consider the 100000-Mr protein to be the native enzyme. The smaller components are catalytically active fragments of the native topoisomerase most probably arising from limited proteolysis either within the nucleus or during the purification of the enzyme. In two-dimensional non-equilibrium pH-gradient electrophoresis gels the topoisomerase size variants exhibit apparent pI values between 8.1 and 8.3, with small but distinct differences between the components. The calf thymus topoisomerase I, upon binding to phage fd-DNA, protects a stretch of 15-25 nucleotides against digestion with DNase I.  相似文献   

10.
J Davis  M Scherer  W P Tsai    C Long 《Journal of virology》1976,18(2):709-718
A sensitive nitrocellulose filter assay that measures the retention of 125I single-stranded calf thymus DNA has been used to detect and purify DNA-binding proteins that retain a biological function from Rauscher murine leukemia virus. By consecutive purification on oligo (dT)- cellulose and DEAE-Bio-Gel columns and centrifugation in 10 to 30% glycerol gradients, RNA-dependent DNA polymerase has been separated from a second virion DNA-binding protein. The binding of this protein to DNA was strongly affected by NaCl concentration but showed little change in activity over a wide range of temperature or pH. After glycerol gradient purification, polyacrylamide gel electrophoresis of this protein showed one major band with a molecular weight of approximately 9,800. This protein binds about as well as to single-stranded Escherichia coli or calf thymus DNA or 70S type C viral RNA. The binding to 125I single-stranded calf thymus DNA is very efficiently inhibited by unlabeled single-stranded DNA from either E. coli or calf thymus and by 70S murine or feline viral RNA. Much larger amounts of double-stranded DNA are required to produce an equivalent percentage of inhibition. This protein, therefore, shows preferential binding to single-stranded DNA or viral RNA.  相似文献   

11.
The replication of plasmid pBR322 DNA has been reconstituted with purified proteins from Escherichia coli. Initiation of the leading-strand requires RNA polymerase holoenzyme, DNA polymerase I, RNase H, and DNA gyrase. Initiation of the lagging-strand requires the primosomal proteins (the dnaB, dnaC, and dnaG proteins, replication factor Y (protein n') and proteins i, n, and n") and the single-stranded DNA binding protein. DNA polymerase III holoenzyme is required for extensive elongation of the nascent DNA chains. The products of this replication reaction are primarily nonsegregated daughter molecules. However, the addition of small amounts of soluble extract from E. coli results in the completion and segregation of these molecules to give mature form I DNA, suggesting that additional factors are required for this process. Topoisomerase I is necessary to make the replication system specific for pBR322 DNA as a template, indicating that the linking number of the DNA, determined by an equilibrium between the opposing activities of topoisomerase I and DNA gyrase, plays a crucial role in determining the reactivity of the DNA molecule toward initiating DNA replication. The function of the proteins involved in the replication of this closed-circular, double-stranded, superhelical DNA is discussed.  相似文献   

12.
We studied the interaction between topoisomerase I and a nicked DNA substrate to determine how the nick permits Escherichia coli topoisomerase I to catenate and knot duplex DNA rings. The presence of just a single nick in a 6600-base pair DNA increased the amount of DNA bound to topoisomerase I by 6-fold. The enzyme acts at the nick, as shown by linearization of nicked circles and covalent attachment of an enzyme molecule opposite the nick. DNA breaks are also introduced by the enzyme at sites not opposite to a nick, but three orders of magnitude less efficiently. The break induced by the enzyme is within several base pairs of the nick and on the complementary strand, but the exact site cut is dictated by DNA sequence requirements. Because these sequence requirements are identical to those for cutting of single-stranded DNA, we conclude that the enzyme stabilizes a denatured region at the nick. Breaks in single-stranded DNA occur 98% of the time when a C residue is four bases to the 5' side unless G is adjacent and 5' to the break. For a DNA circle nicked at a unique location, the efficiency of DNA breakage opposite the nick correlates with the rate of catenation. We present a unified model for the relaxation, catenation, and knotting reactions of topoisomerase I in which the enzyme induces a break in a single-stranded region, but bridges that break with covalent and noncovalent interactions and allows passage of one duplex or single-stranded DNA segment.  相似文献   

13.
Control of DNA topology is critical in thermophilic organisms in which heightened ambient temperatures threaten the stability of the double helix. An important role in this control is played by topoisomerase I, a member of the type IA family of topoisomerases. We investigated the binding and activity of this topoisomerase from the hyperthermophilic bacterium Thermotoga maritima on duplex DNA using single molecule techniques, presenting it with various substrates such as (+) plectonemes, (-) plectonemes, and denaturation bubbles. We found the topoisomerase inactive on both types of plectonemes, but active on denaturation bubbles produced at increased stretching forces in underwound DNA. The relaxation rate depended sensitively on the applied force and the protein concentration. These observations could be understood in terms of a preference of the topoisomerase for single-stranded DNA over double-stranded DNA and allowed for a better understanding of activity of the topoisomerase in bulk experiments on circular plasmids. Binding experiments on a single duplex molecule using a mutant unable to perform cleavage confirmed this interpretation and suggested that T.maritima topoisomerase I behaves like an SSB by lowering the denaturation threshold of underwound DNA. Finally, experiments with a unique single-stranded DNA showed that both ends of the cleaved DNA are tightly maintained by the enzyme, supporting an enzyme-bridged mechanism for this topoisomerase.  相似文献   

14.
Escherichia coli DNA topoisomerase I catalyzes relaxation of negatively supercoiled DNA. The reaction proceeds through a covalent intermediate, the cleavable complex, in which the DNA is cleaved and the enzyme is linked to the DNA via a phosphotyrosine linkage. Each molecule of E. coli DNA topoisomerase I has been shown to have three tightly bound zinc(II) ions required for relaxation activity (Tse-Dinh, Y.-C., and Beran-Steed, R.K. (1988) J. Biol. Chem. 263, 15857-15859). It is shown here that Cd(II) could replace Zn(II) in reconstitution of active enzyme from apoprotein. The role of metal was analyzed by studying the partial reactions. The apoenzyme was deficient in sodium dodecyl sulfate-induced cleavage of supercoiled PM2 phage DNA. Formation of covalent complex with linear single-stranded DNA was also reduced in the absence of metal. However, the cleavage of small oligonucleotide was not affected, and the apoenzyme could religate the covalently bound oligonucleotide to another DNA molecule. Assay of noncovalent complex formation by retention of 5'-labeled DNA on filters showed that the apoenzyme was not inhibited in noncovalent binding to DNA. It is proposed that zinc(II) coordination in E. coli DNA topoisomerase I is required for the transition of the noncovalent complex with DNA to the cleavable state.  相似文献   

15.
The competition of the DNA-binding proteins I and II of Escherichia coli and of the phage fd DNA-binding protein for single-stranded DNA was investigated. Their roles in cells might be judged from their binding affinities to DNA and their mutual exchange in the DNA . protein complexes. Strongest binding on single strands was found for the phage protein. DNA-binding protein II displaced half of the protein I in the complex with single-stranded DNA when no double-stranded DNA was present. Protein-complexed single strands were protected against degradation. The protection is less pronounced for protein II which can increase the stability of the fd DNA complex with DNA-binding protein I against nucleolytic cleavage.  相似文献   

16.
Crude soluble enzyme fractions that initiate bidirectional replication from the unique Escherichia coli chromosomal origin (oriC) have been fractionated further to identify the components and mechanisms of this complex system. Among the necessary factors is a class of specificity proteins that suppress initiations on plasmids which lack the oriC sequence and which do not depend on dnaA protein. One such specificity factor has been identified as RNase H (Ogawa, T., Pickett, G. G., Kogoma, T., and Kornberg, A. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1040-1044). Another, described here, has proved to be topoisomerase I. A protein was purified to near homogeneity based on assays of (i) inhibition of the replication of plasmids (and other supercoiled DNA) lacking oriC and (ii) conferral of dnaA protein dependence on the replication of an oriC plasmid. This specificity protein is indistinguishable from authentic E. coli topoisomerase I by several criteria: (i) molecular weight under denaturing conditions, (ii) relaxation activity on negatively supercoiled DNA, (iii) cleavage pattern of single-stranded DNA, (iv) specificity factor activity, and (v) neutralization of activity by antibody against topoisomerase I. One possible mechanism of the specificity action of topoisomerase I is destabilization of primers for replication except when they are preserved at an oriC sequence bound by dnaA protein and other replication proteins.  相似文献   

17.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

18.
It has been shown earlier that eukaryotic type I DNA topoisomerases act on duplex DNA regions, while eubacterial type I topoisomerases require single-stranded regions. The present paper demonstrates that the type I topoisomerase from extremely thermophilic archaebacteria, reverse gyrase, winds DNA by binding to single-stranded DNA regions. Thus, type I topoisomerases, both relaxing one in eubacteria and reverse gyrase in extremely thermophilic archaebacteria share a substrate specificity to melted DNA regions. The important consequence of this specificity is that the cellular DNA superhelical stress actively controlled by bacterial topoisomerases is confined to a narrow range characterized by a low stability of the double helix. Hence we suppose that bacterial topoisomerase systems control duplex stability near its minimum, for which purpose they create an appropriate negative superhelicity at moderate temperatures or a positive one at extremely high temperatures, the feedback being ensured by the aforesaid specificity of type I bacterial topoisomerases.  相似文献   

19.
The A* protein of phi X174 is an inhibitor of DNA replication   总被引:6,自引:1,他引:5       下载免费PDF全文
Extracts prepared from phi X174 infected E. coli cells inhibited in vitro RF replication The inhibition was dependent upon the presence of A* protein in the reaction and served as an assay to highly purify the A* protein. Purified A* protein bound tightly to duplex DNA as well as single-stranded DNA. The binding of the A* protein to duplex DNA inhibited (I) its single-stranded DNA specific endonucleolytic activity; (II) in vitro synthesis of viral (+) single stranded DNA on an A-RFII DNA complex template; (III) ATP hydrolysis by rep protein and unwinding of the strands of RF DNA. We propose that this inhibitory activity is responsible in vivo for the shut off of E. coli chromosome replication during phi X174 infection, and has a role in the transition from semiconservative RF DNA replication to single-stranded DNA synthesis in the life cycle of phi X174.  相似文献   

20.
Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号