首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sugar-binding protein, or endogenous lectin, was localized on fixed and paraffin-embedded thyroid sections by means of fluorescein-labelled neoglycoproteins. Fluorescence microscopy showed the binding of this lectin to be dependent on calcium ions and acidic pH and indicated sugar specificity for GlcNAc moieties only. In human, porcine and murine thyrocytes, specific binding was observed mainly on subcellular organelles. Conversely, in rabbit thyrocytes, specific labelling was seen mostly at the apical cell surface facing the follicular lumen. The possibility that this novel endogenous lectin is involved in the Tg metabolism is considered.  相似文献   

2.
The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.  相似文献   

3.
Crocus sativus lectin recognizes Man3GlcNAc in the N-glycan core structure   总被引:2,自引:0,他引:2  
Crocus sativus lectin (CSL) is one of the truly mannose-specific plant lectins that has a unique binding specificity that sets it apart from others. We studied sugar-binding specificity of CSL in detail by a solution phase method (fluorescence polarization) and three solid phase methods (flow injection, surface plasmon resonance, and microtiter plate), using a number of different glycopeptides and oligosaccharides. CSL binds the branched mannotriose structure in the N-glycan core. Substitution of the terminal Man in the Manalpha(1-3)Man branch with GlcNAc drastically decreases binding affinity much more than masking of the terminal Man in the Manalpha(1-6)Man branch. Most interestingly, the beta-Man-linked GlcNAc in N-glycan core structure contributes greatly to the binding. The effect of this GlcNAc is so strong that it can substantially offset the negative effect of substitution on the nonreducing terminal Man residues. On the other hand, the GlcNAc that is usually attached to Asn in N-glycans and the l-Fuc linked at the 6-position of the GlcNAc are irrelevant to the binding. A bisecting GlcNAc neither contributes to nor interferes with the binding. This unique binding specificity of CSL offers many possibilities of its use in analytical and preparative applications.  相似文献   

4.
经肼解、Bio-Gel P-2柱层析、NaB^3H4和NaBH4还原,制备各种来源的、氚标记在还原末端的、还原末端为N-乙酰氨基葡萄糖醇的混合寡糖,经Bio-Gel P-4凝胶柱分离,以及用糖苷酶酶解,制备了各种不同类型的氚标记的寡糖。这些寡糖在固定化的PCL-Sepharose柱上亲和层析,根据各种类型寡糖在PCL-Sepharose柱上的层析行为,确定红花菜豆(矮生红花变种)凝集素(PCL)的  相似文献   

5.
The thermodynamics of binding of various saccharides to artocarpin, from Artocarpus integrifolia seeds, a homotetrameric lectin (M(r) 65, 000) with one binding site per subunit, was determined by isothermal titration calorimetry measurements at 280 and 293 K. The binding enthalpies, DeltaH(b), are the same at both temperatures, and the values range from -10.94 to -47.11 kJ mol(-1). The affinities of artocarpin as obtained from isothermal titration calorimetry are in reasonable agreement with the results obtained by enzyme-linked lectin absorbent essay, which is based on the minimum amount of ligand required to inhibit horseradish peroxidase binding to artocarpin in enzyme-linked lectin absorbent essay (Misquith, S., Rani, P. G., and Surolia, A. (1994) J. Biol. Chem. 269, 30393-30401). The interactions are mainly enthalpically driven and exhibit enthalpy-entropy compensation. The order of binding affinity of artocarpin is as follows: mannotriose>Manalpha3Man>GlcNAc(2)Man(3)>MealphaMan>Man>M analpha6Man> Manalpha2Man>MealphaGlc>Glc, i.e. 7>4>2>1.4>1>0.4>0.3>0.24>0.11. The DeltaH for the interaction of Manalpha3Man, Manalpha6Man, and MealphaMan are similar and 20 kJ mol(-1) lower than that of mannotriose. This indicates that, while Manalpha3Man and Manalpha6Man interact with the lectin exclusively through their nonreducing end monosaccharide with the subsites specific for the alpha1,3 and alpha1,6 arms, the mannotriose interacts with the lectin simultaneously through all three of its mannopyranosyl residues. This study thus underscores the distinction in the recognition of this common oligosaccharide motif in comparison with that displayed by other lectins with related specificity.  相似文献   

6.
The kinetics of the binding of mannooligosaccharides to the heterodimeric lectin from garlic bulbs was studied using surface plasmon resonance. The interaction of the bound lectin immobilized on the sensor chip with a selected group of high mannose oligosaccharides was monitored in real time with the change in response units. This investigation corroborates our earlier study about the special preference of garlic lectin for terminal alpha-1,2-linked mannose residues. An increase in binding propensity can be directly correlated to the addition of alpha-1,2-linked mannose to the mannooligosaccharide at its nonreducing end. Mannononase glycopeptide (Man9GlcNAc2Asn), the highest oligomer studied, exhibited the greatest binding affinity (Ka = 1.2 x 10(6) m(-1) at 25 degrees C). An analysis of these data reveals that the alpha-1,2-linked terminal mannose on the alpha-1,6 arm is the critical determinant in the recognition of mannooligosaccharides by the lectin. The association (k1) and dissociation rate constants (k(-1)) for the binding of Man9GlcNAc2Asn to Allium sativum agglutinin I are 6.1 x 10(4) m(-1) s(-1) and 4.9 x 10(-2) s(-1), respectively, at 25 degrees C. Whereas k1 increases progressively from Man3 to Man7 derivatives, and more dramatically so for Man8 and Man9 derivatives, k(-1) decreases relatively much less gradually from Man3 to Man9 structures. An unprecedented increase in the association rate constant for interaction with Allium sativum agglutinin I with the structure of the oligosaccharide ligand constitutes a significant finding in protein-sugar recognition.  相似文献   

7.
The lectin from Lens culinaris (lentil) has a binding specificity for glycopeptides bearing 6-O-linked fucose on the reducing terminus on complex-type N-linked oligosaccharides. Lentil lectin therefore provides an excellent example of a carbohydrate binding protein in which high-affinity interactions are dependent on the integrity of the oligosaccharide core structure. We report here the synthesis of the 1-N-glycyl beta-derivative of Gal beta 4GlcNAc beta 2Man alpha 6(Gal beta 4GlcNAc beta 2Man alpha 3)Man beta 4GlcNAc beta 4(Fuc alpha 6)-GlcNAc (Gal-2F) and its subsequent biotinylation and palmitoylation. The biotin derivative when bound to a streptavidin-fluorescein isothiocyanate (FITC) conjugate was able to bind to both concanavalin A (ConA) and lentil lectin affinity columns. In contrast, synthesis of the biotin derivative of the glycamine derivative of Gal-2F and subsequent binding to streptavidin-FITC afforded reactivity to a ConA affinity column but not to a lentil lectin affinity column. Lentil lectin also bound to plastic microtiter plates containing the adsorbed palmitoyl-1-N-glycyl beta-derivative. No binding occurred when the homologous glycamine neoglycolipid was used. These results suggest the 1-N-glycyl beta-derivative of oligosaccharides may have general utility as an intermediate in the synthesis of novel glycoconjugate probes.  相似文献   

8.
Specificity of chicken liver carbohydrate binding protein   总被引:2,自引:0,他引:2  
T B Kuhlenschmidt  Y C Lee 《Biochemistry》1984,23(16):3569-3575
Chicken hepatic lectin was isolated with affinity chromatography by using neoglycoproteins of bovine serum albumin (BSA) to which n moles of glycosides has been attached by amidination (Glycn-AI-BSA) [Lee, Y. C., Stowell, C. P., & Krantz, M. J. (1976) Biochemistry 15, 3956-3963] attached to Sepharose 4B. The same protein could be isolated from Man-, GlcNAc-, and Glc-AI-BSA-Sepharose columns and was identical with the protein previously reported [Kawasaki, T., & Ashwell, G. (1977) J. Biol. Chem. 252, 6536-6543]. The sugar specificity for binding to the isolated chicken hepatic lectin examined with Glycn-AI-BSA showed the order of potency for binding Glycn-AI-BSA to be D-GlcNAc greater than D-Glc, D-Man, L-Fuc greater than D-Gal, and the estimated Ki's for binding GlcNAc36-AI-BSA, Glc37-AI-BSA, Man33-AI-BSA, and L-Fuc28-AI-BSA were (6-20) X 10(-11), (2-3) X 10(-8), (3-9) X 10(-8), and 5 X 10(-8) M, respectively. The binding requirements of the binding protein were studied with a wide variety of Glycn-BSA's with different sugars and aglyconic linkages, as well as simple sugars and glycosides. It was concluded that (1) GlcNAc is the most potent sugar for binding, (2) the requirement for C-2 substituents is flexible, (3) an equatorial OH group at C-3 and C-4 must be present, (4) the 5-CH2OH group is not required for binding, (5) the lectin cannot accommodate a negative charge at C-6, and (6) D-Man and L-Fuc bind equally well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Endogenous ligands for the hepatic lectin which is specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) were isolated from rat liver rough microsomes and primary cultured hepatocytes by affinity chromatography on an immobilized MBP column. Western blotting using specific antisera revealed that serum glycoproteins, alpha 1-macroglobulin, alpha 1-antitrypsin, and alpha 1-acid glycoprotein, and a lysosomal enzyme, beta-glucuronidase were the major constituents of the endogenous ligands. These endogenous ligands consisted of high mannose-type oligosaccharides of Man9GlcNAc2 and Man8GlcNAc2, and had rapid turnover rates with an average half-life of 45 min, indicating that they were mainly composed of biosynthetic intermediates of glycoproteins. In view of the identification of the endogenous ligands as the biosynthetic intermediates of glycoproteins, the possible functions of the intracellular lectin are discussed in relation to the intracellular transport of glycoproteins.  相似文献   

10.
Human immunoglobulin G is known to contain 16 different biantennary complex-type asparagine-linked sugar chains, each of which occurs in a nonsialylated, monosialylated, or disialylated form. These oligosaccharides can be separated into 14 fractions by sequential affinity chromatography with Aleuria aurantia lectin (AAL)-Sepharose, RCA120-WG003, and E4-phytohemagglutinin-agarose columns. Twelve of them were found to contain a single oligosaccharide, while the fraction which passed through all three columns was shown to contain two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT. The fraction, which bound to the AAL-Sepharose column and passed through the remaining two lectin columns, also contained two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (Fuc alpha 1----6)GlcNAcOT. These results indicated that serial affinity chromatography with the three lectin columns can be used effectively to detect changes in the sugar chains of IgG resulting from diseases such as rheumatoid arthritis.  相似文献   

11.
A lectin was purified from the mushroom Hygrophorus russula by affinity chromatography on a Sephadex G-50 column and BioAssist S cation exchange chromatography and designated H. russula lectin (HRL). The results of sodium dodecyl sulfate-polyaclylamidegel electrophoresis, gel filtration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of HRL indicated that it was composed of four identical 18.5?kDa subunits with no S-S linkage. Isoelectric focusing of the lectin showed bands near pI 6.40. The complete sequence of 175 amino acid residues was determined by amino acid sequencing of intact or enzyme-digested HRL. The sequence showed homology with Grifola frondosa lectin. The cDNA of HRL was cloned from RNA extracted from the mushroom. The open reading frame of the cDNA consisted of 528?bp encoding 176 amino acids. In hemagglutination inhibition assay, α1-6 mannobiose was the strongest inhibitor and isomaltose, Glcα1-6Glc, was the second strongest one, among mono- and oligosaccharides tested. Frontal affinity chromatography indicated that HRL had the highest affinity for Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc, and non-reducing terminal Manα1-6 was essential for the binding of HRL to carbohydrate chains. The sugar-binding specificity of HRL was also analyzed by using BIAcore. The result from the analysis exhibited positive correlations with that of the hemagglutination inhibition assay. All the results suggested that HRL recognized the α1-6 linkage of mannose and glucose, especially the Manα1-6 bond. HRL showed a mitogenic activity against spleen lymph cells of an F344 rat. Furthermore, an enzyme-linked immunosorbent assay showed strong binding of HRL to human immunodeficiency virus type-1 gp120.  相似文献   

12.
IL-2, a lectin with specificity for high mannose glycopeptides   总被引:6,自引:0,他引:6  
Utilizing a solid phase binding assay, we have demonstrated that rIL-2 binds with high affinity to the human urinary glycoprotein uromodulin. This binding is specifically inhibited by the saccharides diacetylchitobiose and Man(alpha 1-3)(Man(alpha 1-6]Man-O-methyl and by the high mannose glycopeptides Man5GlcNAc2-R and Man6GlcNAc2-R, but not by Man9GlcNAc2-R. rIL-2 also binds OVA, a glycoprotein which contains approximately 50% high mannose chains at a single glycosylation site, and to yeast mannan. This binding is inhibited by the same battery of saccharides which inhibit the binding to uromodulin. The conclusion that rIL-2 is a lectin is further supported by the observation that the sequence of IL-2 shares 27% homology with a 33-residue sequence of the carbohydrate-binding domain of human mannose-binding protein. The potential physiologic relevance of the carbohydrate binding activity is further elucidated by studies which show that 1) binding of soluble rIL-2 to immobilized uromodulin is enhanced at a pH of 4 to5 in the presence of divalent cations, and 2) neither uromodulin nor the high mannose glycopeptide Man5GlcNAc2Asn blocks the binding of rIL-2 to the IL-2R. Thus the carbohydrate-binding site of rIL-2 is distinct from the cell surface receptor-binding site, and might function preferentially in acidic microenvironments.  相似文献   

13.
We have elucidated the carbohydrate-binding profile of a non-monosaccharide-binding lectin named Eucheuma serra lectin (ESA)-2 from the red alga Eucheuma serra using a lectin-immobilized column and a centrifugal ultrafiltration-high performance liquid chromatography method with a variety of fluorescence-labeled oligosaccharides. In both methods, ESA-2 exclusively bound with high-mannose type (HM) N-glycans, but not with any of other N-glycans including complex type, hybrid type and core pentasaccharides, and oligosaccharides from glycolipids. These findings indicate that ESA-2 recognizes the branched oligomannosides of the N-glycans. However, ESA-2 did not bind with any of the free oligomannoses examined that are constituents of the branched oligomannosides implying that the portion of the core N-acetyl-D-glucosamine (GlcNAc) residue(s) of the N-glycans is also essential for binding. Thus, the algal lectin was strictly specific for HM N-glycans and recognized the extended carbohydrate structure with a minimum size of the pentasaccharide, Man(alpha1-3)Man(alpha1-6)Man(beta1-4)GlcNAc(beta1-4) GlcNAc. Kinetic analysis of binding with a HM heptasaccharide (M5) showed that ESA-2 has four carbohydrate-binding sites per polypeptide with a high association constant of 1.6x10(8) M-1. Sequence analysis, by a combination of Edman degradation and mass analyses of the intact protein and of peptides produced by its enzymic digestions, showed that ESA-2 is composed of 268 amino acids (molecular weight 27950) with four tandemly repeated domains of 67 amino acids. The number of repeats coincided with the number of carbohydrate-binding sites in the monomeric molecule. Surprisingly, the marine algal lectin was homologous to hemagglutinin from the soil bacterium Myxococcus xanthus.  相似文献   

14.
Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis   总被引:11,自引:0,他引:11  
M D Snider  O C Rogers 《Cell》1984,36(3):753-761
The transport of sugar residues into the endoplasmic reticulum (ER) during glycoprotein synthesis was studied by examining the transmembrane orientations of the oligosaccharide-lipid precursors of asparagine-linked oligosaccharides. Using the lectin concanavalin A, the lipid-linked oligosaccharides Man3-5GlcNAc2 were found on the cytoplasmic side of ER-derived vesicles in vitro while lipid-linked Man6-9GlcNAc2 and Glc1-3Man9GlcNAc2 were found facing the lumen. These results suggest that Man5GlcNAc2-lipid is synthesized on the cytoplasmic side of the ER membrane and then translocated to the luminal side. Glc3Man9GlcNAc2-lipid is then completed on the luminal side where it serves as the donor in peptide glycosylation. Translocation of Man5GlcNAc2-lipid offers a mechanism for the export of sugar residues from the cytoplasm during glycoprotein synthesis. This translocation may be the reason for the participation of lipid-linked mono- and oligosaccharides in glycoprotein synthesis.  相似文献   

15.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

16.
Macoma birmanica agglutinin (MBA) that seems to play crucial roles in the innate immunity of marine bivalve, M. birmanica has been earlier defined as GlcNAc/Man specific. However, most complementary carbohydrate structures to its binding domain and ligand clustering in its recognition profile have not been established. In this study, the complete recognition profile of MBA was examined by enzyme-linked lectin-sorbent assay and inhibition assay. Among the monosaccharides tested, GlcNAc was more reactive followed by Man and Glc, others were non-reactive; revealing the importance of equatorial -NAc group at C-2, -OH group at C-4 and C-6, and pyranose conformation of hexose. Moreover, β-glycosides of GlcNAc and Glc were more potent whereas for Man it was α-glycoside. MBA recognized both exposed and internal α-Man and β-GlcNAc/Glc residues well with most linkages except (β1-4). This binding pattern was further extended and confirmed by polyvalent glycoside clusters of GlcNAc(β1-2)Man(α1-, which was a better inhibitor than Man(α1-2/3/6)Man(α1- or Man(α1-3/6)Man(β1- present in well-defined naturally occurring glycoproteins. This broad range specificity explains the importance of MBA as an important pattern recognition molecule that provides more realistic picture of carbohydrate-based immune response triggering.  相似文献   

17.
The carbohydrate binding specificity of Psathyrella velutina lectin (PVL) was thoroughly investigated by analyzing the behavior of various complex-type oligosaccharides and human milk oligosaccharides on a PVL-Affi-Gel 10 column. Basically, the lectin interacts with the nonreducing terminal beta-N-acetylglucosamine residue, but does not show any affinity for the nonreducing terminal N-acetylgalactosamine or N-acetylneuraminic acid residue. Substitution of the terminal N-acetylglucosamine residues of oligosaccharides by galactose completely abolishes their affinity to the column. GlcNAc beta 1----3Gal beta 1----4sorbitol binds to the column, but GlcNAc beta 1----6Gal beta 1----4sorbitol is only retarded in the column. The behavior of degalactosylated N-linked oligosaccharides is quite interesting. Although all degalactosylated monoantennary sugar chain isomers are retarded in the column, those with the GlcNAc beta 1----2Man group interact more strongly with the column than those with the GlcNAc beta 1----4Man group or the GlcNAc beta 1----6Man group. The degalactosylated bi- and triantennary sugar chains bind to the column, but the tetraantennary ones are only retarded in the column. These results indicated that the binding affinity is not simply determined by the number of terminal N-acetylglucosamine residues. Addition of the bisecting N-acetylglucosamine residue reduces the affinity of oligosaccharides to the column, but addition of an alpha-fucosyl residue at the C-6 position of the proximal N-acetylglucosamine residue does not affect the behavior of oligosaccharides in the column. These results indicated that the binding specificity of PVL is quite different from those of other N-acetylglucosamine-binding lectins from higher plants, which interact preferentially with the GlcNAc beta 1----4 residue.  相似文献   

18.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

19.
Rat liver Golgi membranes contain two alpha 1,2-specific mannosidases (IA and IB) (Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W., and Touster, O. (1982) J. Biol. Chem. 257, 3660-3668). Mannosidase IA has now been purified to apparent homogeneity by detergent extraction and (NH4)2SO4 precipitation, followed by Sephacryl S-300, ion-exchange, and hydroxylapatite chromatography. The enzyme was homogeneous by nondenaturing polyacrylamide gel electrophoresis with different gel concentrations, and Ferguson plot analysis indicated an Mr of 230,000 for the native enzyme. Although electrophoresis under denaturing conditions generally gave a subunit Mr of 57,000, electrophoresis of less than 1 microgram of protein yielded a faint doublet of Mr 57,000 and 58,000. Thus, the enzyme appears to be a tetramer with four very similar subunits. The enzyme bound to concanavalin A-Sepharose 4B only when it was kept in contact with the lectin for 16 h. Endoglycosidase H treatment resulted in loss of its binding to the lectin, without leading to a detectable change in the size of the enzyme subunit. On electrophoretic gels, the enzyme gave a faint positive stain with periodic acid-Schiff's base. The enzyme contained about 0.9% hexose by direct analysis. It did not bind to affinity resins specific for neuraminic acid, galactose, or N-acetylglucosamine. All these studies suggest that the enzyme is a glycoprotein containing only one or two clusters of high mannose oligosaccharide. Mannosidase IA is active toward oligosaccharides containing alpha 1,2-linked mannosyl residues. [3H]Man9GlcNAc, [3H] Man8GlcNAc, [3H]Man7GlcNAc, and [3H]Man6GlcNAc are good substrates. Man9GlcNAc, the best substrate, yields Man8, Man7, and Man6 derivatives with structures suggesting that the sequence of release of mannose residues is rather specific. Immunoprecipitation studies using polyclonal antibody (IgG) prepared against homogeneous mannosidase IA cross-reacted with mannosidase IB, a result suggesting that these two enzymes share antigenic determinants. However, no cross-reactivity was observed with rat liver cytosolic and lysosomal alpha-D-mannosidases or with Golgi mannosidase II.  相似文献   

20.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号