首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity of wine Saccharomyces cerevisiae strains involved in spontaneous fermentations was studied by analysis of mitochondrial DNA restriction patterns. Yeasts were isolated at different stages of fermentations with must from three different white grapevine varieties, Albariño, Godello and Treixadura, which are autochthonous from Galicia. Nineteen different patterns out of a total of 446 strains analysed were identified, but only a few of them appeared at high frequency and therefore were able to lead the fermentation process. Some strains were common to all fermentations; however, most of them were a minority being only found at low frequency for one or two specific grape varieties. The dominant strain was different for each variety except in one case, suggesting that some strains are better adapted to certain must conditions.  相似文献   

2.
New PCR-based methods for yeast identification   总被引:2,自引:0,他引:2  
AIMS: To characterize reference yeast strains and identify indigenous strains isolated from wine fermentations by PCR methods. METHODS AND RESULTS: We compared several PCR techniques for yeast identification. We used oligonucleotide primers that are complementary to (i) intron splice sites, (ii) REP and (iii) ERIC elements to produce PCR fingerprints that display specific patterns between the different yeast species. These three techniques were used to characterize 41 reference yeast strains belonging to 15 different species and to identify 40 indigenous strains isolated from grape must and wine fermentations. Species-specific banding patterns were obtained with the three PCR-techniques with different degrees of intraspecific differentiation depending on the method. By comparing the PCR fingerprints of unknown isolates with those produced by reference strains, we identified yeast strains isolated from an industrial wine fermentation. CONCLUSIONS: All three PCR techniques are rapid, reliable and simple methods of yeast identification. As far as we know, this is the first time that the primers designed for amplifying repetitive elements in bacteria have been successfully used in yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: Industry needs rapid, reliable and simple methods of yeast identification. The proposed PCR techniques will allow to achieve this objective.  相似文献   

3.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

4.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

5.
Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.  相似文献   

6.
[背景]酵母菌在葡萄酒酿造中起到重要的作用,接种商业活性干酵母(active dry yeast,ADY)进行葡萄酒酿造在国内较为普遍,然而商业酿酒酵母(Saccharomyces cerevisiae)对我国本土酵母菌资源的影响及二者竞争关系的相关报道不多.[目的]比较商业酿酒酵母在不同品种葡萄酒工业化生产中的定殖差...  相似文献   

7.
Sun  Yue  Li  Erhu  Qi  Xiaotao  Liu  Yanlin 《Annals of microbiology》2015,65(2):911-919
Mixed inoculation of Saccharomyces cerevisiae strains is used in winemaking for achieving high sensory quality of the wine. However, information on the diversity and population of yeasts during inoculated fermentation is very limited. In this study, we evaluated the effect of mixed inocula with different inoculation timing on the yeast community during fermentations of Cabernet Sauvignon. Grape must was inoculated with pure cultures of S. cerevisiae RC212 or S. cerevisiae R312, and simultaneous and sequential inoculation of both strains. Wallersterin Laboratory Nutrient (WLN) medium and sequence of the 26S rDNA D1/D2 domain were used to compare the diversity of yeast species. Five species, including Candida diversa, Hanseniaspora opuntiae, H. uvarum, Issatchenkia orientalis and I. terricola, were identified in the grape must, with Issatchenkia sp. being predominant (67.5 %). Three to four species were involved in each fermentation treatment. The fermentations by mixed inocula presented more yeast species than by pure inocula. Interdelta sequence typing was used to identify S. cerevisiae strains. Ten genotypes were identified among 322 isolated S. cerevisiae strains. Their distribution varied among different stages of fermentations and different inoculation treatments. The inoculated strains were not predominant, while indigenous genotypes I, III, and V showed strong competitiveness during fermentation. In general, this study provided information on the change of population structure and genetic diversity of yeasts in fermentations inoculated with pure and mixed S. cerevisiae strains.  相似文献   

8.
Aims: To analyse the diversity of wild yeast in spontaneous fermentations of a white wine and to select the most suitable autochthonous starter yeasts. The selected yeasts would be used for inoculation of industrial fermentations in several years. Methods and Results: Yeasts were characterized by applying electrophoretic karyotyping. This technique was chosen because it can reveal the large‐scale mutations in the yeast genome induced by gross chromosomal rearrangements. This type of mutation is considered one of the main forces behind the rapid evolution of industrial yeasts. A heterogeneous population of yeast strains was observed in the spontaneous fermentations during two consecutive years. Four of the most abundant strains were isolated and tested for microbiological features of industrial importance. The selected autochthonous strains were used as starter yeasts for the following 7 years. In the majority of these experiences, we obtained homogeneous yeast populations, in which the karyotype of one of the inoculated strains – karyotype V – emerged as clearly dominant. Conclusions: The inoculation of the selected strain with karyotype V and a proper handling of the inoculum scaling‐up process led to the substitution of the spontaneous fermentations by controlled fermentations producing a highly satisfactory final product. Significance and Impact of the Study: We monitored the wine yeast population of an industrial system for a total of 9 years. Our work is one of the first examples made at industrial scale showing how molecular techniques can be successfully applied to improve the efficiency of the winemaking process.  相似文献   

9.
接种发酵和自然发酵中酿酒酵母菌株多样性比较   总被引:1,自引:0,他引:1  
何荣荣  彭婧  孙悦 《微生物学报》2021,61(5):1211-1221
[目的]探究自然发酵和接种发酵两种发酵方式,对霞多丽葡萄发酵中酵母菌种多样性和酿酒酵母菌株遗传多样性的影响.[方法]以霞多丽葡萄为原料,分别进行自然发酵和接种不同酿酒酵母菌株(NXU 17-26、UCD522和UCD2610)的发酵,利用26S rDNA D1/D2区序列分析和Interdelta指纹图谱技术分别进行酵...  相似文献   

10.
The aim of this work was to characterize the indigenous wine Saccharomyces cerevisiae diversity within the Argentinean Patagonia. Two cellars with particular enological practices located in different winegrowing areas were selected and 112 indigenous S. cerevisiae isolates were obtained from spontaneous red wine fermentations carried out in them. Thirty-five and 19 patterns were distinguished among the total indigenous isolates using mtDNA-RFLP and killer biotype analysis, respectively. The combination of both typing techniques rendered a higher variability with 42 different patterns, i.e. 42 strains, evidencing a great diversity in S. cerevisiae populations associated with spontaneous red wine fermentations in Northwestern Patagonia. The analysis of the relatedness among strains using Principal Coordinates Analysis from combined data allowed the clustering of the strains into two populations significantly related to their origin fermentations. The combined use of the mtDNA-RFLP analysis together with the killer biotype method proved to be a powerful tool in the fingerprinting of the enological S. cerevisiae strains.  相似文献   

11.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   

12.
ABSTRACT: BACKGROUND: Interspecific hybrids between S. cerevisiae x S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae x S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. RESULTS: Comparative genomic hybridization (CGH) and ploidy analyses carried out in this study confirmed the presence of individual and differential chromosomal composition patterns for most S. cerevisiae x S. kudriavzevii hybrids from beer and wine. All hybrids share a common set of depleted S. cerevisiae genes, which also are depleted or absent in the wine strains studied so far, and the presence a common set of S. kudriavzevii genes, which may be associated with their capability to grow at low temperatures. Finally, a maximum parsimony analysis of chromosomal rearrangement events, occurred in the hybrid genomes, indicated the presence of two main groups of wine hybrids and different divergent lineages of brewing strains. CONCLUSION: Our data suggest that wine and beer S. cerevisiae x S. kudriavzevii hybrids have been originated by different rare-mating events involving a diploid wine S. cerevisiae and a haploid or diploid European S. kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes involved in cold adaptation as well as those related to S. kudriavzevii mitochondrial functions.  相似文献   

13.
The use of commercial wine yeast strains as starters has grown extensively over the past two decades. In this study, a large-scale sampling plan was devised over a period of 3 years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters for more than 5 years. Seventy-two spontaneous fermentations were completed from a total of 106 grape samples, and 2160 colonies were isolated. Among these, 608 Saccharomyces strains were identified and 104 different chromosomal patterns found. The large majority of these (91) were found as unique patterns, indicating great biodiversity. There were differences in biodiversity according to the vineyard and year, showing that the biodiversity of Saccharomyces strains is influenced by climatic conditions and specific factors associated with the vineyards, such as age and size. Strains that were terroir yeast candidates were not found. The biodiversity of S. cerevisiae strains after harvest was similar to that in the early campaign; moreover, a temporal succession of S. cerevisiae strains is shown. This fact, together with the differences in biodiversity levels verifies that other factors were more important than commercial yeast utilization in the biodiversity of the vineyard.  相似文献   

14.
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.  相似文献   

15.
The multi-yeast strain composition of wine fermentations has been well established. However, the effect of multiple strains of Saccharomyces spp. on wine flavour is unknown. Here, we demonstrate that multiple strains of Saccharomyces grown together in grape juice can affect the profile of aroma compounds that accumulate during fermentation. A metabolic footprint of each yeast in monoculture, mixed cultures or blended wines was derived by gas chromatography - mass spectrometry measurement of volatiles accumulated during fermentation. The resultant ion spectrograms were transformed and compared by principal-component analysis. The principal-component analysis showed that the profiles of compounds present in wines made by mixed-culture fermentation were different from those where yeasts were grown in monoculture fermentation, and these differences could not be produced by blending wines. Blending of monoculture wines to mimic the population composition of mixed-culture wines showed that yeast metabolic interactions could account for these differences. Additionally, the yeast strain contribution of volatiles to a mixed fermentation cannot be predicted by the population of that yeast. This study provides a novel way to measure the population status of wine fermentations by metabolic footprinting.  相似文献   

16.
Evidence for domesticated and wild populations of Saccharomyces cerevisiae   总被引:3,自引:3,他引:0  
Saccharomyces cerevisiae is predominantly found in association with human activities, particularly the production of alcoholic beverages. S. paradoxus, the closest known relative of S. cerevisiae, is commonly found on exudates and bark of deciduous trees and in associated soils. This has lead to the idea that S. cerevisiae is a domesticated species, specialized for the fermentation of alcoholic beverages, and isolates of S. cerevisiae from other sources simply represent migrants from these fermentations. We have surveyed DNA sequence diversity at five loci in 81 strains of S. cerevisiae that were isolated from a variety of human and natural fermentations as well as sources unrelated to alcoholic beverage production, such as tree exudates and immunocompromised patients. Diversity within vineyard strains and within saké strains is low, consistent with their status as domesticated stocks. The oldest lineages and the majority of variation are found in strains from sources unrelated to wine production. We propose a model whereby two specialized breeds of S. cerevisiae have been created, one for the production of grape wine and one for the production of saké wine. We estimate that these two breeds have remained isolated from one another for thousands of years, consistent with the earliest archeological evidence for wine-making. We conclude that although there are clearly strains of S. cerevisiae specialized for the production of alcoholic beverages, these have been derived from natural populations unassociated with alcoholic beverage production, rather than the opposite.  相似文献   

17.
This work describes the influence of yeast population on the chemical characteristics of wine obtained by spontaneous and inoculated fermentation of must from Vitis vinifera Lado, a minor white grapevine autochthonous to Galicia (NW Spain). The study was carried out for two consecutive years. The results showed that musts derived from Lado presented a high acidity though the potential alcohol level was acceptable. The genetic diversity of S. cerevisiae strains isolated from spontaneous fermentations was low, probably due to must characteristics, although these did not interfere with the implantation of the commercial strains used. Analyses showed that the wines subsequently produced had high alcoholic levels and very high acidities (pH 3.0) as was expected from must composition. Wines obtained from spontaneous fermentations had a lower alcohol content but higher total acidity than those from inoculated fermentations. Monovarietal wines produced from Lado were poorly evaluated in sensorial tests because of their unbalanced structure and sourness; however, when they were mixed with other autochthonous white varieties with less acidity, the resulting wines were well accepted.  相似文献   

18.
Summary The presence of killer, resistant and sensitive populations of Saccharomyces cerevisiae along the successive stages of alcoholic fermentation in three vineyards from NW Spain was investigated. The global results showed that approximately 71% were killer-sensitive strains, 6.6% were killer-resistant, and 22.4% belonged to the k2 killer type. However, there were important differences concerning the presence of the three phenotypes during successive stages of fermentation. Killer populations were isolated at the highest percentages in samples from must and from active alcoholic fermentations. Killer-resistant strains steadily increased during fermentation. Additionally, important differences in these populations were observed among the three vineyards. In this sense, the presence of killer populations was more important in samples from the vineyards with higher average pH values of the must. However, great differences in the distribution of killer phenotype between successive vintages (with the same initial pH of must) belonging to the same vineyard implies the presence of other factors effecting killer behaviour. Offprint requests to: T. G. Villa  相似文献   

19.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

20.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号