首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minor U12-dependent class of eukaryotic nuclear pre-mRNA introns is spliced by a distinct spliceosomal mechanism that requires the function of U11, U12, U5, U4atac, and U6atac snRNAs. Previous work has shown that U11 snRNA plays a role similar to U1 snRNA in the major class spliceosome by base pairing to the conserved 5'' splice site sequence. Here we show that U6atac snRNA also base pairs to the 5'' splice site in a manner analogous to that of U6 snRNA in the major class spliceosome. We show that splicing defective mutants of the 5'' splice site can be activated for splicing in vivo by the coexpression of compensatory U6atac snRNA mutants. In some cases, maximal restoration of splicing required the coexpression of compensatory U11 snRNA mutants. The allelic specificity of mutant phenotype suppression is consistent with Watson-Crick base pairing between the pre-mRNA and the snRNAs. These results provide support for a model of the RNA-RNA interactions at the core of the U12-dependent spliceosome that is strikingly similar to that of the major class U2-dependent spliceosome.  相似文献   

2.
We have introduced a single photochemical crosslinking reagent into specific sites in the central domain of U6 to identify the sites that are in close proximity to the pre-mRNA substrate. Four distinct U6 snRNAs were synthesized with a single 4-thiouridine (4-thioU) at positions 46, 51, 54, and 57, respectively. Synthetic U6 RNA containing the 4-thioU modifications can functionally reconstitute splicing activity in cell-free yeast splicing extracts depleted of endogenous U6 snRNA. Upon photoactivation with UV (>300 nm), 4-thioU at position 46 forms crosslinks to pre-mRNA near the 5' splice site at nt +4, +5, +6, and +7 in the intron, whereas 4-thioU at position 51 crosslinks to the pre-mRNA at positions -2, -1, +1, +2, +3, and at the invariant G in the lariat intermediate. All crosslinks are dependent on the presence of ATP and the splicing substrate. The two crosslinks to the pre-mRNA from position 46 and 51 of U6 can also occur in prp2 heat-inactivated yeast splicing extracts blocked immediately prior to the first chemical step. Significantly, the crosslink from position 51 can undergo subsequent splicing when the mutant extract is complemented with functional Prp2 protein in a chase experiment, indicating that the crosslink reflects a functional interaction that is maintained during the first step. The crosslink to lariat intermediate appears when the mutant spliceosomes are complemented with functional Prp2 protein added exogenously. This experiment is a paradigm for future studies in which different mutant extracts are used to establish the stage in assembly at which particular RNA-RNA interactions defined by unique crosslinks occur.  相似文献   

3.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

4.
R K Alvi  M Lund    R T Okeefe 《RNA (New York, N.Y.)》2001,7(7):1013-1023
Pre-messenger RNA splicing is a two-step process by which introns are removed and exons joined together. In yeast, the U5 snRNA loop 1 interacts with the 5' exon before the first step of splicing and with the 5' and 3' exons before the second step. In vitro studies revealed that yeast U5 loop 1 is not required for the first step of splicing but is essential for holding the 5' and 3' exons for ligation during the second step. It is critical, therefore, that loop 1 contacts the 5' exon before the first step of splicing to hold this exon following cleavage from the pre-mRNA. At present it is not known how U5 loop 1 is positioned on the 5' exon prior to the first step of splicing. To address this question, we have used site-specific photoactivated crosslinking in yeast spliceosomes to investigate the interaction of U5 loop 1 with the pre-mRNA prior to the first step of splicing. We have found that the highly conserved uridines in loop 1 make ATP-dependent contacts with an approximately 8-nt region at the 5' splice site that includes the invariant GU. These interactions are dependent on functional U2 and U6 snRNAs. Our results support a model where U5 snRNA loop 1 interacts with the 5' exon in two steps during its targeting to the 5' splice site.  相似文献   

5.
Little is currently known about proteins that make contact with the pre-mRNA in the U12-dependent spliceosome and thereby contribute to intron recognition. Using site-specific cross-linking, we detected an interaction between the U11-48K protein and U12-type 5' splice sites (5'ss). This interaction did not require branch point recognition and was sensitive to 5'ss mutations, suggesting that 48K interacts with the 5'ss during the first steps of prespliceosome assembly in a sequence-dependent manner. RNA interference-induced knockdown of 48K in HeLa cells led to reduced cell growth and the inhibition of U12-type splicing, as well as the activation of cryptic, U2-type splice sites, suggesting that 48K plays a critical role in U12-type intron recognition. 48K knockdown also led to reduced levels of U11/U12 di-snRNP, indicating that 48K contributes to the stability and/or formation of this complex. In addition to making contact with the 5'ss, 48K interacts with the U11-59K protein, a protein at the interface of the U11/U12 di-snRNP. These studies provide important insights into the protein-mediated recognition of the U12-type 5'ss, as well as functionally important interactions within the U11/U12 di-snRNP.  相似文献   

6.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

7.
U12-dependent introns containing alterations of the 3' splice site AC dinucleotide or alterations in the spacing between the branch site and the 3' splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5' splice site AU dinucleotide, any nucleotide could serve as the 3'-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3' splice site function. A branch site-to-3' splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3' splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3' splice site but that formation of the prespliceosomal complex A requires an active 3' splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3' splice site.  相似文献   

8.
Exon mutations uncouple 5' splice site selection from U1 snRNA pairing   总被引:16,自引:0,他引:16  
B Séraphin  M Rosbash 《Cell》1990,63(3):619-629
It has previously been shown that a mutation of yeast 5' splice junctions at position 5 (GUAUGU) causes aberrant pre-mRNA cleavages near the correct 5' splice site. We show here that the addition of exon mutations to an aberrant cleavage site region transforms it into a functional 5' splice site both in vivo and in vitro. The aberrant mRNAs are translated in vivo. The results suggest that the highly conserved G at the 5' end of introns is necessary for the second step of splicing. Further analyses indicate that the location of the U1 snRNA-pre-mRNA pairing is not affected by the exon mutations and that the precise 5' splice site is selected independent of this pairing.  相似文献   

9.
We have identified a class of pre-mRNAs that are spliced in HeLa extracts depleted for U1 snRNP (delta U1 extracts). Previously, we described pre-mRNAs that can be spliced in delta U1 extracts only when high concentrations of SR splicing factors are added. In contrast, the substrates characterized here are efficiently processed in delta U1 extracts without the addition of excess SR proteins. The members of this class comprise both a naturally occurring pre-mRNA, from the Drosophila fushi tarazu gene, and a chimera containing sequences from two different pre-mRNAs that individually are dependent upon U1 snRNP or excess SR proteins. Several sequence elements account for the variations in dependence on U1 snRNP and SR proteins for splicing. In one pre-mRNA, a single element was identified adjacent to the branch site. In the other, two elements flanking the 5'' splice site were found to be critical. This U1-independent splicing reaction may provide a mechanism for cells to control the extent of processing of different classes of pre-mRNAs in response to altered activities of SR proteins, and furthermore suggests that U1 snRNP-independent splicing may not be uncommon.  相似文献   

10.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   

11.
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.  相似文献   

12.
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.  相似文献   

13.
Major structural changes occur in the spliceosome during its catalytic activation, which immediately precedes the splicing of pre-mRNA. Whereas changes in snRNA conformation are well documented at the level of secondary RNA-RNA interactions, little is known about the tertiary structure of this RNA-RNA network, which comprises the spliceosome's catalytic core. Here, we have used the hydroxyl-radical probe Fe-BABE, tethered to the tenth nucleotide (U(+10)) of the 5' end of a pre-mRNA intron, to map RNA-RNA proximities in spliceosomes. These studies revealed that several conserved snRNA regions are close to U(+10) in activated spliceosomes, namely (i) the U6 snRNA ACAGAG-box region, (ii) portions of the U6 intramolecular stem-loop (U6-ISL) including a nucleotide implicated in the first catalytic step (U74), and (iii) the region of U2 that interacts with the branch point. These data constrain the relative orientation of these structural elements with respect to U(+10) in the activated spliceosome. Upon conversion of the activated spliceosome to complex C, the accessibility of U6-ISL to hydroxyl-radical cleavage is altered, suggesting rearrangements after the first catalytic step.  相似文献   

14.
15.
16.
Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.  相似文献   

17.
A mutational analysis of U12-dependent splice site dinucleotides   总被引:4,自引:1,他引:3       下载免费PDF全文
Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5' A residue can splice to any 3' residue, although C is preferred. A 5' G residue can splice to 3' G or U residues with a preference for G. Little or no splicing was observed to 3' A or C residues. A 5' U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5' U to 3' U produced detectable spliced products. The dependence of 3' splice site activity on the identity of the 5' residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5' splice site and the next to last position of the 3' splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3' splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3' splice site distance of 11-12 nucleotides appears to be the same for both classes.  相似文献   

18.
Alternative splicing increases the coding capacity of genes through the production of multiple protein isoforms by the conditional use of splice sites and exons. Many alternative splice sites are regulated by the presence of purine-rich splicing enhancer elements (ESEs) located in the downstream exon. Although the role of ESEs in alternative splicing of the major class U2-dependent introns is well established, no alternatively spliced minor class U12-dependent introns have so far been described. Although in vitro studies have shown that ESEs can stimulate splicing of individual U12-dependent introns, there is no direct evidence that the U12-dependent splicing system can respond to ESEs in vivo. To investigate the ability of U12-dependent introns to use alternative splice sites and to respond to ESEs in an in vivo context, we have constructed two sets of artificial minigenes with alternative splicing pathways and evaluated the effects of ESEs on their alternative splicing patterns. In minigenes with alternative U12-dependent 3' splice sites, a purine-rich ESE promotes splicing to the immediately upstream 3' splice site. As a control, a mutant ESE has no stimulatory effect. In minigene constructs with two adjacent U12-dependent introns, the predominant in vivo splicing pattern results in the skipping of the internal exon. Insertion of a purine-rich ESE into the internal exon promotes the inclusion of the internal exon. These results show that U12-dependent introns can participate in alternative splicing pathways and that U12-dependent splice sites can respond to enhancer elements in vivo.  相似文献   

19.
20.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号