首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformations of acetylcholine receptor fromTorpedo californica in the absence and presence of agonists, antagonists, and local anesthetics were studied by circular dichroism (CD). Without ligands, the receptor had about 40% helix, 20% -sheets, and 10% -turns as analyzed from its far-UV CD spectrum. Its near-UV CD spectrum resembled that of acetylcholinesterase from the same source. None of the ligands studied altered the far-UV spectrum of the receptor. However, in the near-UV region, carbamylcholine and acetylcholine shifted the Phe and Tyr bands of AChR to less negative, whereas hexamethonium changed the Tyr bands to more negative, indicating that the site of binding of agonists and antagonists and their effect on the conformation of the receptor may be different. Decamethonium, procaine, and lidocaine had no effect on both the far- and near-UV CD spectra of acetylcholine receptor.  相似文献   

2.
Kassuya CA  Rogerio AP  Calixto JB 《Peptides》2008,29(8):1329-1337
In this study, we investigated the effects of the selective ET(A) (BQ-123) and ET(B) (BQ-788) receptor antagonists for endothelin-1 (ET-1) against several flogistic agent-induced paw edema formation and ovalbumin-induced allergic lung inflammation in mice. The intraplantar injection of BQ-123, but not BQ-788, significantly inhibited carrageenan-, PAF-, ET-1- and bradykinin-induced paw edema formation. The obtained inhibitions (1h after the inflammatory stimulus) were 79+/-5%, 55+/-4%, 55+/-6% and 74+/-4%, respectively. In carrageenan-induced paw edema, the mean ID(50) value for BQ-123 was 0.77 (0.27-2.23)nmol/paw. The neutrophil influx induced by carrageenan or PAF was reduced by BQ-123, with inhibitions of 55+/-2% and 72+/-4%, respectively. BQ-123 also inhibited the indirect macrophage influx induced by carrageenan (55+/-6%). However, BQ-788 failed to block the cell influx caused by either of these flogistic agents. When assessed in the bronchoalveolar lavage fluid in a murine model of asthma, both BQ-123 and BQ-788 significantly inhibited ovalbumin-induced eosinophil recruitment (78+/-6% and 71+/-8%), respectively. Neither neutrophil nor mononuclear cell counts were significantly affected by these drugs. Our findings indicate that ET(A), but not ET(B), selective ET-1 antagonists are capable of preventing the acute inflammatory responses induced by carrageenan, PAF, BK and ET-1. However, both ET(A) and ET(B) receptor antagonists were found to be effective in inhibiting the allergic response in a murine model of asthma.  相似文献   

3.
4.
The opioid receptor mu1 (OPRM1) mediates the action of morphine. Although genetic background plays an important role in the susceptibility toward abuse of drugs as evident from familial, adoption and twin studies, association of specific single‐nucleotide polymorphisms of OPRM1 gene with narcotic addiction is to be established. Here, we demonstrate the involvement of A118G polymorphism of exon1 of human OPRM1 gene (hOPRM1), with heroin and alcohol addiction, in a population in eastern India. Statistical analysis exhibited a significant association of G allele with both heroin and alcohol addiction with a risk factor of Ptrend < 0.05. The functional significance of G allele in A118G single‐nucleotide polymorphisms was evaluated by studying the regulation of protein kinase A (PKA), pCREB, and pERK1/2 by morphine in Neuro 2A cells, stably transfected with either wild type or A118G mutant hOPRM1. Unlike acute morphine treatment, both chronic morphine exposure and withdrawal precipitated by naloxone were differentially regulated by A118 and G118 receptor isoforms when both PKA and pERK1/2 activities were compared. Results suggest that the association of A118G polymorphism to heroin and alcohol addiction may be because of the altered regulation of PKA and pERK1/2 during opioid and alcohol exposures.  相似文献   

5.
6.
The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.  相似文献   

7.
8.
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR‐expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR‐CreER knock‐in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)‐inducible Cre recombinase. We show that the MOR‐CreER allele undergoes Tm‐dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR‐CreER mouse line combined with a Cre‐dependent adeno‐associated virus vector enables robust gene manipulation in the MOR‐enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre‐mediated recombination. Thus, the MOR‐CreER mouse is a powerful tool to study MOR‐expressing cells with conditional gene manipulation in developing and mature neural tissues.  相似文献   

9.
The effects of morphine-3-glucuronide (M3G), a metabolite of morphine, were determined on the antinociceptive actions, as measured by the tail flick test, of morphine, a μ-opioid receptor agonist, of U-50,488H, a κ-opioid receptor agonist, of [ -Pen2, -Pen5]enkephalin (DPDPE), a δ1-opioid receptor agonist, and of [ -Ala2,Glu4]deltorphin II (deltorphin II), a δ2-opioid receptor agonist in mice. Morphine administered ICV (2.5 μg/mouse) or SC (10 mg/kg), U-50,488H (25 mg/kg, IP), DPDPE (15 μg/mouse; ICV), and deltorphin II (15 μg/mouse, ICV) produced antinociception in mice. Intraperitoneal or ICV injections of M3G did not produce any effect on the tail flick latency nor did it affect the antinociception-induced by morphine, U-50,488H, DPDPE, or deltorphin II. Previously M3G has been shown to antagonize the antinociceptive effects of morphine in the rat. It is concluded that in the mouse, M3G neither produces hyperalgesia nor modifies the actions of μ-, κ-, δ1-, or δ2-opioid receptor agonists.  相似文献   

10.
The micro-opioid receptor (MOR) was identified in equine oocytes, cumulus and granulosa cells. By RT-PCR, a 441bp fragment was observed. By immunoblotting, a 65 kDa band was detected in samples of winter anestrous whereas in cells recovered in breeding season, two bands, 65 and 50 kDa, were found. The 65 kDa band was significantly more intense in winter anestrous specimens. In samples recovered in the breeding season, this band significantly decreased with the raise of follicle size and was heavier in compact oocytes and cumulus cells. The protein was localized on the oolemma and within the cytoplasm of oocytes and cumulus cells. In vitro oocyte maturation rate (MR), analyzed by confocal microscopy for nuclear chromatin, microfilaments and microtubules, was reduced after the addition of 3 x 10(-8) M beta-endorphin in medium without additional hormones. Inhibitory effects of 10(-3) M Naloxone in oocytes collected in anestrous and spring transition were observed, both in presence and absence of hormones added to culture medium. Increased MRs were observed in oocytes collected in anestrous and cultured in presence of 10(-8) M Naloxone. The exposure to 10(-3) M Naloxone induced significant intracellular calcium increases in cumulus cells recovered all over the year. beta-Endorphin 3 x 10(-8) M induced significant calcium increases only in cumulus cells recovered in fall transition and anestrous. Naloxone 10(-8) M did not induce intracellular calcium modifications. We conclude that the MOR is differentially expressed in equine cumulus-oocyte complexes in the different seasons of the year and plays a role in the seasonal regulation of meiotic competence of equine oocytes.  相似文献   

11.
12.
13.
The role of extracellular acidosis in inflammatory airway diseases is not well known. One consequence of tissue acidification is the stimulation of sensory nerves via the polymodal H(+)-gated transmembrane channels ASICs and TRPV1 receptor. The present study investigated the effect of acidosis on airway basal tone and responsiveness in the guinea pig. Acidosis (pH 6.8, 10 min, 37 degrees C) significantly decreased the basal tone of tracheal rings (p<0.01 vs. paired control). Moreover, pH fall raised the maximal contraction of tracheal rings to acetylcholine (p<0.05 vs. paired control). The pH-induced relaxation of airway basal tone was inhibited by pretreatments with ASIC1a or ASIC3/ASIC2a inhibitors (0.5 mM ibuprofen, 0.1 mM gadolinium), nitric oxide synthase inhibitor (1 mM L-NAME), and guanylate cyclase inhibitor (1 microM ODQ). In contrast, the pH-induced relaxation of airway basal tone was not modified by epithelium removal or pretreatments with a TRPV1 antagonist (1 microM capsazepine), a combination of NK(1,2,3) receptor antagonists (0.1 microM each), a blocker of voltage-sensitive Na(+) channels (1 microM tetrodotoxin), a cyclooxygenase inhibitor with no activity on ASICs (1 microM indomethacin) or ASIC3 and ASIC3/ASIC2b inhibitors (10 nM diclofenac, 1 microM aspirin). Furthermore, acid-induced hyperresponsiveness to acetylcholine was inhibited by epithelium removal, capsazepine, NK(1,2,3) receptor antagonists, tetrodotoxin, amiloride, ibuprofen and diclofenac. In summary, the initial pH-induced airway relaxation seems to be independent of sensory nerves, suggesting a regulation of airway basal tone mediated by smooth muscle ASICs. Conversely, the pH-induced hyperresponsiveness involves sensory nerves-dependent ASICs and TRPV1, and an unknown epithelial component in response to acidosis.  相似文献   

14.
Two novel small molecule gonadotropin-releasing hormone (GnRH) receptor antagonists (12 and 13) of the furamide-class were synthesized and evaluated in vitro for their receptor binding affinities for the rat GnRH receptor. Radiolabeling with no carrier added fluorine-18 of the appropriate precursors was investigated in a one-step reaction. Log P (Octanol/PBS pH 7.4) and serum stability of the compounds were investigated. The antagonists showed low nM affinity for the rat GnRH receptor. 18F-radiolabled compounds were obtained in high radiochemical purity (>95%) and specific activity (>75 GBq/μmol). These findings suggest this class of compounds holds promise as potential probes for PET targeting of GnRH-receptor expression.  相似文献   

15.
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt), and its naturally occurring isoform (MOPN40D) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble‐averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside‐enriched domains and partial association with cholesterol‐enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor‐specific. KOP‐containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D. Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt, whereas this effect was not observed for MOPN40D.   相似文献   

16.
Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+- and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1-receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5-N-ethylcarboxyamidoadenosine) at high concentration (10 microM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10 nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6-cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50 microM) can be increased by 10 microM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1-receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues.  相似文献   

17.
We studied the role of 5-HT(1A) receptors in controlling the release of glutamate (GLU) in the medial prefrontal cortex (mPFC) of conscious rats with the in vivo microdialysis technique. The effect of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin infused in the prefrontal cortex was examined under basal conditions and on the rise of extracellular GLU (+106%) induced by co-infusion of the competitive N-methyl-d-aspartate receptor antagonist 3-[(R)-2-carboxypiperazin-4yl]-propyl-1-phosphonic acid (CPP). 8-OH-DPAT (0.3 and 3 microm) had no effect on basal extracellular GLU, but the higher concentration completely abolished the rise of extracellular GLU induced by CPP. CPP also increased extracellular serotonin (5-HT) in the mPFC (+50%) and this effect was antagonized by 3 microm 8-OH-DPAT which, by itself, had no effect on basal 5-HT release. The effects of 8-OH-DPAT on extracellular GLU and 5-HT were reversed by the 5-HT(1A) receptor antagonist WAY100 635 (100 microm), indicating a selective involvement of 5-HT(1A) receptors. WAY100 635 had no effect by itself. These results show that the stimulation of cortical 5-HT(1A) receptors prevents the CPP-evoked rise of extracellular GLU and 5-HT and suggest that these effects may contribute to the ability of intracortical 8-OH-DPAT to counteract cognitive deficits caused by the blockade of NMDA receptors.  相似文献   

18.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors.  相似文献   

19.
Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture.  相似文献   

20.
The development and maintenance of the prostate are dependent upon a complex series of interactions occurring between the epithelial and stromal tissues (Hayward and Cunha [2000]: Radiol. Clin. N. Am. 38:1-14). During the process of prostatic carcinogenesis, there are progressive changes in the interactions of the nascent tumor with its surrounding stroma and extracellular matrix. These include the development of a reactive stromal phenotype and the possible promotion, by stromal cells, of epithelial proliferation and loss of differentiated function (Hayward et al. [1996]: Ann. N. Y. Acad. Sci. 784:50-62; Grossfeld et al. [1998]: Endocr. Related Cancer 5:253-270; Rowley [1998]: Cancer Metastasis Rev. 17:411-419; Tuxhorn et al. [2002]: Clin. Cancer Res. 8:2912-2923). Many molecules play an as yet poorly defined role in establishing and maintaining a growth quiescent glandular structure in the adult. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a candidate regulator of prostatic epithelial differentiation and may play a role in restricting epithelial proliferation. PPARgamma agonists are relatively non-toxic and have been used with limited success to treat some prostate cancer patients. We would propose that a more complete understanding of PPARgamma biology, particularly in the context of appropriate stromal-epithelial and host-tumor interactions would allow for the selection of patients most likely to benefit from this line of therapy. In particular, it seems reasonable to suggest that the patients most likely to benefit may be those with relatively indolent low stage disease for whom this line of therapy could be a useful additive to watchful waiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号