首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of p58pim1, a homolog of human RCC1, results in uncoupling of mitosis from the completion of DNA replication in fission yeast. An extragenic suppressor of a mutant allele of pim1, esp1, has been isolated and characterized. esp1 encodes a predicted product of 305 amino acid residues, which shares 71% identity with budding yeast SIT4, a type2A related protein phosphatase. p58pim1 binds p25spi1, a 25-kd ras-related GTPase previously isolated as a high dosage suppressor of pim1. The complex dissociates in the presence of guanine nucleotides and Mg2+. The mutant p58pim1 is defective in its ability to bind p25spi1, suggesting that the physical interaction is essential for the maintenance of the interdependency of cell cycle event. In the esp1 pim1 double mutant, the mutant p58pim1 protein is still defective in its ability to bind to p25spi1. However, pmi1 induced premature mitosis is completely suppressed, suggesting that esp1 may act downstream of the p58pim1/p25spi1 physical interaction but upstream of the activation of the M-phase specific histone H1 kinase.  相似文献   

2.
S Sazer  P Nurse 《The EMBO journal》1994,13(3):606-615
The isolation and characterization of the mutant dcdts (defect in chromatin decondensation) has led to the identification of two conserved proteins required for the re-establishment of the interphase state following the completion of mitosis. The gene that rescues the dcdts mutant encodes a protein similar to the human chromatin binding protein, RCC1. A suppressor of dcdts encodes a protein nearly identical to the human GTP-binding protein, RAN, encoded by the TC4 gene. These results indicate that completion of mitosis is regulated at least in part by a GTPase molecular switch. The gene and suppressor of dcdts are identical to the previously described Schizosaccharomyces pombe genes pim1 (premature initiation of mitosis) and spi1 (suppressor of pim), but the dcdts mutant does not enter mitosis prematurely, a phenotype that has been reported for the pim1-46ts mutant. Based on our studies we propose that the pim1 gene product is required for regulating chromatin condensation with a primary role at the end of mitosis and pleiotropic effects on other aspects of cell behavior.  相似文献   

3.
Perturbations of the spi1p GTPase system in fission yeast, caused by mutation or overexpression of several regulatory proteins, result in a unique terminal phenotype that includes condensed chromosomes, a wide medial septum, and a fragmented nuclear envelope. To identify potential regulators or targets of the spi1p GTPase system, a screen for cDNAs whose overexpression results in this terminal phenotype was conducted, and seven clones that represent three genes, named med1, med2, and med3 (mitotic exit defect), were identified. Their genetic interaction with the spi1p GTPase system was established by showing that the spi1p guanine nucleotide exchange factor mutant pim1-d1ts was hypersensitive to their overexpression. med1 encodes a homologue of the human Ran-binding protein, RanBP1, and has been renamed sbp1 (spi1-binding protein). sbp1p binds to spi1p-GTP and costimulates the GTPase-activating protein (GAP)-catalyzed GTPase activity. Cells in which sbp1p is depleted or overproduced phenocopy cells in which the balance between spi1p-GTP and spi1p-GDP is perturbed by other means. Therefore, sbp1p mediates and/or regulates the essential functions of the spi1p GTPase system. med2 and med3 encode novel fission yeast proteins that, based on our phenotypic analyses, are likely to identify additional regulators or effectors of the spi1p GTPase system.  相似文献   

4.
Ran/TC4, first identified as a well-conserved gene distantly related to H-RAS, encodes a protein which has recently been shown in yeast and mammalian systems to interact with RCC1, a protein whose function is required for the normal coupling of the completion of DNA synthesis and the initiation of mitosis. Here, we present data indicating that the nuclear localization of Ran/TC4 requires the presence of RCC1. Transient expression of a Ran/TC4 protein with mutations expected to perturb GTP hydrolysis disrupts host cell DNA synthesis. These results suggest that Ran/TC4 and RCC1 are components of a GTPase switch that monitors the progress of DNA synthesis and couples the completion of DNA synthesis to the onset of mitosis.  相似文献   

5.
spi1p of Schizosaccharomyces pombe is a structural homolog of the mammalian GTPase Ran. The distribution between the GTP- and GDP-bound forms of the protein is regulated by evolutionarily conserved gene products, rna1p and pim1p, functioning as GTPase-activating protein (GAP) and guanine nucleotide exchange factor (GEF), respectively. Antibodies to spi1p, pim1p, and rna1p were generated and used to demonstrate that pim1p is exclusively nuclear, while rna1p is cytoplasmic. A loss of pim1p GEF activity or an increase in the rna1p GAP activity correlates with a change in the localization of the GTPase from predominantly nuclear to uniformly distributed, suggesting that the two forms are topologically segregated and that the nucleotide-bound state of spi1p may dictate its intracellular localization. We demonstrate that the phenotype of cells overproducing the GAP resembles the previously reported phenotype of mutants with alterations in the GEF: the cells are arrested in the cell cycle as septated, binucleated cells with highly condensed chromatin, fragmented nuclear envelopes, and abnormally wide septa. Consistent with the expectation that either an increased dosage of the GAP or a mutation in the GEF would lead to an increase of the spi1p-GDP/spi1p-GTP ratio relative to that of wild-type cells, overexpression of the GAP together with a mutation in the GEF is synthetically lethal. The similar phenotypic consequences of altering the functioning of the nuclear GEF or the cytoplasmic GAP suggest that there is a single pool of the spi1p GTPase that shuttles between the nucleus and the cytoplasm. Phenotypically, rna1 null mutants, in which spi1p-GTP would be expected to accumulate, resemble pim1(ts) and rna1p-overproducing cells, in which spi1p-GDP would be expected to accumulate. Taken together, these results support the hypothesis that the balance between the GDP- and GTP-bound forms of spi1p mediates the host of nuclear processes that are adversely affected when the functioning of different components of this system is perturbed in various organisms.  相似文献   

6.
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed aberrantly [3] [4], but not when DNA replication is blocked with hydroxyurea (HU). Previous studies have implicated the protein kinase Mec1p in S-phase checkpoint control [5]. Unlike mec1 mutants, pds1 mutants efficiently inhibit anaphase when replication is blocked. This does not, however, exclude an essential S-phase checkpoint function of Pds1 beyond the early S-phase arrest point of a HU block. Here, we show that Pds1p is an essential component of a previously unsuspected checkpoint control system that couples the completion of S phase with mitosis. Further, the S-phase checkpoint comprises at least two distinct pathways. A Mec1p-dependent pathway operates early in S phase, but a Pds1p-dependent pathway becomes essential part way through S phase.  相似文献   

7.
The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events.  相似文献   

8.
Proteolysis of mitotic regulators like securins and cyclins requires Fizzy(FZY)/Cdc20 and Fizzy-related(FZR)/Hct1/Cdh1 proteins. Budding yeast Cdh1 acts not only during G1, but is also required for B-type cyclin degradation during exit from mitosis when Cdh1 is a target of the mitotic exit network controlling progression through late mitosis and cytokinesis. In contrast, observations in frog and Drosophila embryos have suggested that the orthologous FZR is not involved during exit from mitosis. However, the potential involvement of minor amounts of maternally derived FZR was not excluded in these studies. Similarly, the reported absence of severe mitotic defects in chicken Cdh1(-/-) cells might be explained by the recent identification of multiple Cdh1 genes [10]. Here, we have carefully analyzed the FZR requirement during exit from mitosis in Drosophila, which, apart from fzr, has only one additional homolog. We find that this fzr2 gene, although expressed in the male germline, is not expressed during mitotic divisions. Moreover, by characterizing fzr alleles, we demonstrate that completion of mitosis including Cyclin B degradation does not require FZR. However, fzr is an essential gene corresponding to the rap locus, and FZR, which accumulates predominantly in the cytoplasm, is clearly required during G1.  相似文献   

9.
DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair.  相似文献   

10.
The mitosis in the free-living flagellate Bodo saltans Ps+ with prokaryotic cytobionts in perinuclear space has been studied. The nuclear division in B. saltans Ps+ occurs by closed mitosis type without condensation of chromosomes. Two spatially separated mitotic spindles begin to form consistently at the initial stages of nuclear division. The spindle including about 20 microtubules appears first and later the second spindle with half the number of microtubules comes at the angle of 30-40 degrees. Both spindles rest their ends against the inner nuclear membrane and form 4 distinct poles. The microtubules of the first spindle are associated with 4 pairs of kinetochores, the microtubules of the second one are associated with 2 pairs of kinetochores. The divergence of the kinetochores towards the poles occurs independently in each spindle. The equatorial phase is not revealed in B. saltans Ps+. The poles of both spindles unite in pairs at the elongation phase of mitosis and form the integrated bipolar structure. At this stage of the nuclear division, the kinetochores reach the poles of subspindles and become indistinguishable. Then the nucleus takes the shape of a dumbbell. The inner nuclear membranes of just formed nuclei have layers of condensed chromatin characteristic of the interphase nuclei of kinetoplastidea. The daughter nuclei separate at the phase of reorganization. There are 1-2 prokaryotic endocytobionts in the perinuclear space of the interphase nuclei in B. saltans Ps+. The symbionts multiply during mitosis and their number reaches more than 20 specimens par nucleus.  相似文献   

11.
Yamada  Kyoji 《Plant & cell physiology》1983,24(6):1017-1026
Meiotic differentiation was investigated using a synchronousmeiotic system of the yeast, Saccharomyces cerevisiae, withrespect to revertibility to mitotic division. When cells weretransferred from a sporulation (SPM) to a growth (YHA) medium,reversion to mitosis took place at all stages up to and includingthe post synthetic phase of DNA. Continuous treatment with 4mM hydroxyurea (HU) during sporulation resulted in the extensionof the the premeiotic S phase. Revertibility to mitosis alsowas extended after the lengthened S phase. Pulse treatment with50 min HU for 2 h during the premeiotic S phase caused a 2-hdelay in the revertibility to mitosis. Similar results wereobtained by treatment with elevated temperatures. The resultsdemonstrate an irreversible commitment of cells to meiosis afterthe completion of premeiotic DNA replication. When cells were transferred from SPM to poor nutrient media,the timing of their reversion to mitosis varied. If transferredto glucose-based media, cells in the premeiotic S phase underwentmitosis; whereas, if transferred to acetate-based media, theycontinued meiotic development. Thus, conversion to meiosis dependson the nutritional environment to which cells are transferred,which implies that a sequence of intracellular change duringpremeiosis leads to meiotic differentiation. (Received February 10, 1983; Accepted June 1, 1983)  相似文献   

12.
13.
Dominant mutants identify new roles for p34cdc2 in mitosis.   总被引:5,自引:2,他引:3       下载免费PDF全文
K Labib  R A Craven  K Crawford    P Nurse 《The EMBO journal》1995,14(10):2155-2165
A large number of dominant mutants have been generated in the fission yeast cdc2 gene, causing lethality when expressed in wild-type cells. The mutants interfere with distinct aspects of p34cdc2 function, producing one of four different phenotypes: mitotic arrest, multiple rounds of S phase in the absence of mitosis, premature mitosis or G2 arrest. The mitotic mutants DL41, DL45 and DL50 are characterized in this paper. Over-expression of DL41 or DL45 causes mitotic arrest, specifically interfering with sister chromatid separation, without preventing spindle elongation. This suggests a role for p34cdc2 in triggering sister chromatid separation at anaphase. DL41 and DL45 also cause abnormal septum formation, suggesting that p34cdc2 may also be involved in regulating this process in fission yeast. These mitotic aspects of p34cdc2 function may involve interaction with p13suc1, since increased expression of suc1 partially suppresses DL41 and DL45. Over-expression of DL50 causes premature mitotic entry in cells that have not completed S phase, resulting in lethality. DL41, DL45 and DL50 correspond to mutation of p34cdc2 residues predicted to be on the surface of the protein, identifying potential sites of interaction with mitotic regulators of p3cdc2, and these residues are conserved amongst cdc2 proteins found in other eukaryotes.  相似文献   

14.
Proper completion of mitosis requires careful coordination of numerous cellular events. It is crucial, for example, that cells do not initiate spindle disassembly and cytokinesis until chromosomes have been properly segregated. Cells have developed numerous safeguards or checkpoints to delay exit from mitosis and initiation of the next cell cycle in response to defects in late mitosis. In this review, we discuss recent work on two homologous signaling pathways in budding and fission yeast, termed the mitotic exit network (MEN) and septation initiation network (SIN), respectively, that are essential for coordinating completion of mitosis and cytokinesis with other mitotic events.  相似文献   

15.
Julien E  Herr W 《Molecular cell》2004,14(6):713-725
The abundant chromatin-associated human factor HCF-1 is a heterodimeric complex of HCF-1N and HCF-1C subunits that are essential for two stages of the cell cycle. The HCF-1N subunit promotes G1 phase progression, whereas the HCF-1C subunit ensures proper cytokinesis at completion of M phase. How the HCF-1C subunit functions is unknown. Here, we show that HCF-1C subunit depletion causes extensive mitotic defects, including a switch from monomethyl to dimethyl lysine 20 of histone H4 (H4-K20) and defective chromosome alignment and segregation. Consistent with these activities, the HCF-1C subunit can associate with chromatin independently of the HCF-1N subunit and regulates the expression of the H4-K20 methyltransferase PR-Set7. Indeed, upregulation of PR-Set7 expression upon loss of HCF-1 leads to improper mitotic H4-K20 methylation and cytokinesis defects. These results establish the HCF-1C subunit as an important M phase regulator and suggest that H4-K20 methylation status contributes to chromosome behavior during mitosis and proper cytokinesis.  相似文献   

16.
U Surana  A Amon  C Dowzer  J McGrew  B Byers    K Nasmyth 《The EMBO journal》1993,12(5):1969-1978
It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of esp1 mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another.  相似文献   

17.
Under normal conditions, mammalian cells will not initiate mitosis in the presence of either unreplicated or damaged DNA. We report here that staurosporine, a tumor promoter and potent protein kinase inhibitor, can uncouple mitosis from the completion of DNA replication and override DNA damage-induced G2 delay. Syrian hamster (BHK) fibroblasts that were arrested in S phase underwent premature mitosis at concentrations as low as 1 ng/ml, with maximum activity seen at 50 ng/ml. Histone H1 kinase activity was increased to approximately one-half the level found in normal mitotic cells. Inhibition of protein synthesis during staurosporine treatment blocked premature mitosis and suppressed the increase in histone H1 kinase activity. In asynchronously growing cells, staurosporine transiently increased the mitotic index and histone H1 kinase activity but did not induce S phase cells to undergo premature mitosis, indicating a requirement for S phase arrest. Staurosporine also bypassed the cell cycle checkpoint that prevents the onset of mitosis in the presence of damaged DNA. The delay in mitotic onset resulting from gamma radiation was reduced when irradiation was followed immediately by exposure to 50 ng/ml of staurosporine. These findings indicate that inhibition of protein phosphorylation by staurosporine can override two important checkpoints for the initiation of mitosis in BHK cells.  相似文献   

18.
Mitotic catastrophe occurs as a result of the uncoupling of the onset of mitosis from the completion of DNA replication, but precisely how the ensuing lethality is regulated or what signals are involved is largely unknown. We demonstrate here the essential role of the ATM/ATR-p53 pathway in mitotic catastrophe from premature mitosis. Chk1 deficiency resulted in a premature onset of mitosis because of abnormal activation of cyclin B-Cdc2 and led to the activation of caspases 3 and 9 triggered by cytoplasmic release of cytochrome c. This deficiency was associated with foci formation by the phosphorylated histone, H2AX (gammaH2AX), specifically at S phase. Ectopic expression of Cdc2AF, a mutant that cannot be phosphorylated at inhibitory sites, also induced premature mitosis and foci formation by gammaH2AX at S phase in both embryonic stem cells and HCT116 cells. Depletion of ATM and ATR protected against cell death from premature mitosis. p53-deficient cells were highly resistant to lethality from premature mitosis as well. Our results therefore suggest that ATM/ATR-p53 is required for mitotic catastrophe that eliminates cells escaping Chk1-dependent mitotic regulation. Loss of this function might be important in mammalian tumorigenesis.  相似文献   

19.
In yeast, the protein phosphatase Cdc14 promotes chromosome segregation, mitotic exit, and cytokinesis by reversing M-phase phosphorylations catalyzed by Cdk1. A key feature of Cdc14 regulation is its sequestration within the nucleolus, which restricts its access to potential substrates for much of the cell cycle. Mammals also possess a nucleolar Cdc14 homolog, termed Cdc14B, but its roles during mitosis and cell division remain speculative. Here we analyze Cdc14B’s subcellular dynamics during mitosis and rigorously test its functional contributions to cell division through homozygous disruption of the Cdc14B locus in human somatic cells. While Cdc14B is initially released from nucleoli at the start of mitosis, the phosphatase quickly redistributes onto segregating sister chromatids during anaphase. This relocalization is mainly driven by Cdk1 inactivation, as pharmacologic inhibition of Cdk1 in prometaphase cells redirects Cdc14B onto chromosomes. However, in sharp contrast to yeast cdc14 mutants, human Cdc14BΔ/Δ cells were viable and lacked defects in spindle assembly, anaphase progression, mitotic exit, and cytokinesis, and continued to segregate ribosomal DNA repeats with near-normal proficiency. Our findings reveal substantial divergence in mitotic regulation between yeast and mammalian cells, as the latter possess efficient mechanisms for completing late M-phase events in the absence of a nucleolar Cdc14-related phosphatase.  相似文献   

20.
Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号