首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomodulins are a family of important regulators of actin dynamics at the pointed ends of actin filaments. Four isoforms of tropomodulin, Tmod1‐Tmod4, are expressed in vertebrates. Binding of tropomodulin to the pointed end is dependent on tropomyosin, an actin binding protein that itself is represented in mammals by up to 40 isoforms. The understanding of the regulatory role of the tropomodulin/tropomyosin molecular diversity has been limited due to the lack of a three‐dimensional structure of the tropomodulin/tropomyosin complex. In this study, we mapped tropomyosin residues interacting with two tropomyosin‐binding sites of tropomodulin and generated a three‐dimensional model of the tropomodulin/tropomyosin complex for each of these sites. The models were refined by molecular dynamics simulations and validated via building a self‐consistent three‐dimensional model of tropomodulin assembly at the pointed end. The model of the pointed‐end Tmod assembly offers new insights in how Tmod binding ensures tight control over the pointed end dynamics.  相似文献   

2.
We examined the function of beta-actinin as a pointed end capping protein of thin filaments in skeletal muscle. An improvement in preparing beta-actinin yielded purified beta-actinin which retained its activity for more than a week. Two-dimensional gel electrophoresis showed that the two subunits, beta I and beta II, of beta-actinin are, respectively, split into two to three components (isoforms) with different isoelectric points. Polyclonal antibody was raised by injecting such purified and undenatured chicken breast muscle beta-actinin composed of several components into a rabbit. Immuno-gold labeling examination with electron microscopy of an F-actin-beta-actinin complex decorated with HMM showed that 85% of bound gold particles was on the pointed end of actin filaments, while the remaining 15% was on the barbed end. This suggests that in beta-actinin preparation pointed end and barbed end capping proteins inevitably coexist. Immunofluorescence and immunoelectron microscopy directly showed that beta-actinin is located at the pointed end of thin filaments in myofibrils; it was also suggested that a capping protein having common antigenic determinants to beta-actinin is located at Z-line. Thus, the physiological function of beta-actinin as a pointed end capping protein was examined as follows: When beta-actinin was dissociated from the pointed end of thin filaments in an I-Z-I brush by using a high salt solution, thin filaments could be disassembled at the pointed ends at concentrations of exogenous actin lower than a critical value. At a physiological ionic strength, these salt-washed thin filaments gradually shortened at a constant rate of about 45 nm/h. Both the association and dissociation of monomeric actin at the pointed end were suppressed by the rebinding of exogenous beta-actinin. The main physiological role of beta-actinin is therefore to stabilize thin filaments in the sarcomere by preventing addition and removal of actin monomers at the pointed filament end.  相似文献   

3.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

4.
5.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.  相似文献   

6.
To obtain kinetic information about the pointed ends of actin filaments, experiments were carried out in the presence of gelsolin which blocks all events at the kinetically dominant barbed ends. The 1:2 gelsolin-actin complex retains 1 mol/mol of actin-bound ATP, but it neither hydrolyzes the ATP nor exchanges it with ATP free in solution at a significant rate. On the other hand, the actin filaments with their barbed ends capped with gelsolin hydrolyze ATP relatively rapidly at steady state, apparently as a result of the continued interaction of ATP-G-actin with the pointed ends of the filaments. ATP hydrolysis during spontaneous polymerization of actin in the presence of relatively high concentrations of gelsolin lags behind filament elongation so that filaments consisting of as much as 50% ATP-actin subunits are transiently formed. Probably for this reason, during polymerization the actin monomer concentration transiently reaches a concentration lower than the final steady-state critical concentration of the pointed end. At steady state, however, there is no evidence for an ATP cap at the pointed ends of gelsolin-capped filaments, which differs from the barbed ends which do have an ATP cap in the absence of gelsolin. As there is no reason presently to think that gelsolin has any effect on events at the pointed ends of filaments, the properties of the pointed ends deduced from these experiments with gelsolin-capped filaments are presumably equally applicable to the pointed ends of filaments in which the barbed ends are free.  相似文献   

7.
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.  相似文献   

8.
Regulation of actin dynamics at filament ends determines the organization and turnover of actin cytoskeletal structures. In striated muscle, it is believed that tight capping of the fast-growing (barbed) ends by CapZ and of the slow-growing (pointed) ends by tropomodulin (Tmod) stabilizes the uniform lengths of actin (thin) filaments in myofibrils. Here we demonstrate for the first time that both CapZ and Tmod are dynamic on the basis of the rapid incorporation of microinjected rhodamine-labelled actin (rho-actin) at both barbed and pointed ends and from the photobleaching of green fluorescent protein (GFP)-labelled Tmod. Unexpectedly, the inhibition of actin dynamics at pointed ends by GFP-Tmod overexpression results in shorter thin filaments, whereas the inhibition of actin dynamics at barbed ends by cytochalasin D has no effect on length. These data demonstrate that the actin filaments in myofibrils are relatively dynamic despite the presence of capping proteins, and that regulated actin assembly at pointed ends determines the length of thin filaments.  相似文献   

9.
Tropomyosin prevents depolymerization of actin filaments from the pointed end   总被引:13,自引:0,他引:13  
Regulation of the pointed, or slow-growing, end of actin filaments is essential to the regulation of filament length. The purpose of this study is to investigate the role of skeletal muscle tropomyosin (TM) in regulating pointed end assembly and disassembly in vitro. The effects of TM upon assembly and disassembly of actin monomers from the pointed filament end were measured using pyrenyl-actin fluorescence assays in which the barbed ends were capped by villin. Tropomyosin did not affect pointed end elongation; however, filament disassembly from the pointed end stopped in the presence of TM under conditions where control filaments disassembled within minutes. The degree of protection against depolymerization was dependent upon free TM concentration and upon filament length. When filaments were diluted to a subcritical actin concentration in TM, up to 95% of the filamentous actin remained after 24 h and did not depolymerize further. Longer actin filaments (150 monomers average length) were more effectively protected from depolymerization than short filaments (50 monomers average length). Although filaments stopped depolymerizing in the presence of TM, they were not capped as shown by elongation assays. This study demonstrates that a protein, such as TM, which binds to the side of the actin filament can prevent dissociation of monomers from the end without capping the end to elongation. In skeletal muscle, tropomyosin could prevent thin filament disassembly from the pointed end and constitute a mechanism for regulating filament length.  相似文献   

10.
Tropomodulin (E-Tmod) is an actin filament pointed end capping protein that maintains the length of the sarcomeric actin filaments in striated muscle. Here, we describe the identification and characterization of a novel tropomodulin isoform, skeletal tropomodulin (Sk-Tmod) from chickens. Sk-Tmod is 62% identical in amino acid sequence to the previously described chicken E-Tmod and is the product of a different gene. Sk-Tmod isoform sequences are highly conserved across vertebrates and constitute an independent group in the tropomodulin family. In vitro, chicken Sk-Tmod caps actin and tropomyosin-actin filament pointed ends to the same extent as does chicken E-Tmod. However, E- and Sk-Tmods differ in their tissue distribution; Sk-Tmod predominates in fast skeletal muscle fibers, lens, and erythrocytes, while E-Tmod is found in heart and slow skeletal muscle fibers. Additionally, their expression is developmentally regulated during chicken breast muscle differentiation with Sk-Tmod replacing E-Tmod after hatching. Finally, in skeletal muscle fibers that coexpress both Sk- and E-Tmod, they are recruited to different actin filament-containing cytoskeletal structures within the cell: myofibrils and costameres, respectively. All together, these observations support the hypothesis that vertebrates have acquired different tropomodulin isoforms that play distinct roles in vivo.  相似文献   

11.
In striated muscle the pointed ends of polar actin filaments are directed toward the center of the sarcomer. Formed filaments keep a constant length of about 1 μm. As polymerization and depolymerization at free pointed ends are not sufficiently slow to account for the constant length of the filaments, we searched for proteins which occur in sarcomers and can stabilize the pointed ends of actin filaments. We observed that tropornyosintroponin complex reduces the rate of association and dissociation of actin molecules at the pointed ends more than 30-fold. On the average, every 600 s one association or dissociation reaction has been found to occur at the pointed ends near the critical actin monomer concentration.  相似文献   

12.
K O Broschat  A Weber  D R Burgess 《Biochemistry》1989,28(21):8501-8506
Tropomyosin is postulated to confer stability to actin filaments in nonmuscle cells. We have found that a nonmuscle tropomyosin isolated from the intestinal epithelium can directly stabilize actin filaments by slowing depolymerization from the pointed, or slow-growing, filament end. Kinetics of elongation and depolymerization from the pointed end were measured in fluorescence assays using pyrenylactin filaments capped at the barbed end by villin. The initial pointed end depolymerization rate in the presence of tropomyosin averaged 56% of the control rate. Elongation from the pointed filament end in the presence of tropomyosin occurred at a lower free G-actin concentration, although the on rate constant, kappa p+, was not greatly affected. Furthermore, in the presence of tropomyosin, the free G-actin concentration was lower at steady state. Therefore, nonmuscle tropomyosin stabilizes the pointed filament end by lowering the off rate constant, kappa p-.  相似文献   

13.
We have characterized the interaction of bovine pancreatic deoxyribonuclease I (DNase I) with the filamentous (F-)actin of red cell membrane skeletons stabilized with phalloidin. The hydrolysis of [3H]DNA was used to assay DNase I. We found that DNase I bound to a homogenous class of approximately equal to 2.4 X 10(4) sites/skeleton with an association rate constant of approximately 1 X 10(6) M-1 S-1 and a KD of 1.9 X 10(-9) M at 20 degrees C. Phalloidin lowered the dissociation constant by approximately 1 order of magnitude. The DNase I which sedimented with the skeletons was catalytically inactive but could be reactivated by dissociation from the actin. Actin and DNA bound to DNase I in a mutually exclusive fashion without formation of a ternary complex. Phalloidin-treated red cell F-actin resembled rabbit muscle G-actin in all respects tested. Since the DNase I binding capacity of the skeletons corresponded to the number of actin protofilaments previously estimated by other methods, it seemed likely that the enzyme binding site was confined to one end of the filament. We confirmed this premise by showing that elongating the red cell filaments with rabbit muscle actin monomers did not appreciably add to their capacity to bind or inhibit DNase I. Saturation of skeletons with cytochalasin D or gelsolin, avid ligands for the barbed end of actin filaments, did not reduce their binding of DNase I. Furthermore, neither cytochalasin D nor DNase I alone blocked all of the sites for addition of monomeric pyrene-labeled rabbit muscle G-actin to phalloidin-treated skeletons; however, a combination of the two agents did so. In the presence of phalloidin, the polymerization of 300 nM pyrenyl actin on nuclei constructed from 5 nM gelsolin and 25 nM rabbit muscle G-actin was completely inhibited by 35 nM DNase I but not by 35 nM cytochalasin D. We conclude that DNase I associates uniquely with and caps the pointed (slow-growing or negative) end of F-actin. These results imply that the amino-terminal, DNase I-binding domain of the actin protomer is oriented toward the pointed end and is buried along the length of the actin filament.  相似文献   

14.
Tropomodulin is a tropomyosin-dependent actin filament capping protein involved in the structural formation of thin filaments and in the regulation of their lengths through its localization at the pointed ends of actin filaments. The disordered N-terminal domain of tropomodulin contains three functional sites: two tropomyosin-binding and one tropomyosin-dependent actin-capping sites. The C-terminal half of tropomodulin consists of one compact domain containing a tropomyosin-independent actin-capping site. Here we determined the structural properties of tropomodulin-1 that affect its roles in cardiomyocytes. To explore the significance of individual tropomyosin-binding sites, GFP-tropomodulin-1 with single mutations that destroy each tropomyosin-binding site was expressed in cardiomyocytes. We demonstrated that both sites are necessary for the optimal localization of tropomodulin-1 at thin filament pointed ends, with site 2 acting as the major determinant. To investigate the functional properties of the tropomodulin C-terminal domain, truncated versions of GFP-tropomodulin-1 were expressed in cardiomyocytes. We discovered that the leucine-rich repeat (LRR) fold and the C-terminal helix are required for its proper targeting to the pointed ends. To investigate the structural significance of the LRR fold, we generated three mutations within the C-terminal domain (V232D, F263D, and L313D). Our results show that these mutations affect both tropomyosin-independent actin-capping activity and pointed end localization, most likely by changing local conformations of either loops or side chains of the surfaces involved in the interactions of the LRR domain. Studying the influence of these mutations individually, we concluded that, in addition to the tropomyosin-independent actin-capping site, there appears to be another regulatory site within the tropomodulin C-terminal domain.  相似文献   

15.
16.
By using isolated actin bundles of brush border microvilli of chicken intestinal epithelial cells, it was clearly visualized that muscle beta-actinin caps the pointed end of an actin filament, whereas cytochalasin D masks the barbed end. The growth rate at the barbed end in the presence of beta-actinin was markedly slower than in its absence.  相似文献   

17.
Kinetics of actin elongation and depolymerization at the pointed end   总被引:2,自引:0,他引:2  
We measured the rate of elongation at the pointed filament end with increasing concentrations of G-actin [J(c) function] using villin-capped actin filaments of very small (actin/villin = 3, VA3) and relatively large size (actin/villin = 18, VA18) as nuclei for elongation. The measurements were made under physiological conditions in the presence of both Mg2+ and K+. In both cases the J(c) function was nonlinear. In contrast to the barbed filament end, however, the slope of the J(c) function sharply decreased rather than increased when the monomer concentration was lowered to concentrations near and below the critical concentration c infinity. At zero monomer concentration, depolymerization at the pointed end was very slow with a rate constant of 0.02 s-1 for VA18. When VA3 was used, the nonlinearity of the J(c) function was greatly exaggerated, and the nuclei elongated at actin concentrations below the independently measured critical concentration for the pointed end. This is consistent with and confirms our previous finding [Weber, A., Northrop, J., Bishop, M. F., Ferrone, F. A., & Mooseker, M. S. (1987) Biochemistry (preceding paper in the issue)] that at an actin-villin ratio of 3 a significant fraction of the villin is free and that a series of steady states exist between villin-actin complexes of increasing size and G-actin. The rate constant of elongation seems to increase with increasing G-actin concentrations because of increasing conversion of free villin into villin-actin oligomers during the period of the measurement of the initial elongation rate. The villin-actin oligomers have a much higher rate constant of actin binding than does free villin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins—called plus-end tracking proteins (+TIPs)—bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150–MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.  相似文献   

19.
The pointed end capping protein, tropomodulin, increases the critical concentration of barbed end capped actin, i.e. it lowers the apparent affinity of pointed ends for actin monomers. We show here that this is due to the conversion of pointed end ADP. P(i)-actin (low critical concentration) to ADP-actin (high critical concentration) when 70-98% of the ends are capped by tropomodulin. We propose that this is due to the low affinity of tropomodulin for pointed ends (K(d) approximately 0.3 microM), which allows tropomodulin to rapidly exchange binding sites and transiently block access of actin monomers to all pointed ends. This leaves time for ATP hydrolysis and phosphate release to go to completion between successive monomer additions to the pointed end. When the affinity of tropomodulin for pointed ends was increased about 1000-fold by the presence of tropomyosin (K(d) < 0.05 nM), capping of 95% of the ends by tropomodulin did not alter the critical concentration. However, the critical concentration did increase when the tropomodulin concentration was raised to the high values effective in the absence of tropomyosin. This may reflect transient tropomodulin binding to tropomyosin-free actin molecules at the pointed ends of the tropomyosin-actin filaments without a high affinity tropomodulin cap, i.e. the ends that determine the value of the actin critical concentration.  相似文献   

20.
Summary. Transglutaminases (TGases) are calcium-dependent enzymes that catalyse cross-linking between proteins by acyl transfer reaction; they are involved in many biological processes including coagulation, differentiation, and tissue repair. Transglutaminase 5 was originally cloned from keratinocytes, and a partial biochemical characterisation showed its involvement in skin differentiation, in parallel to TGase 1 and TGase 3. Here, we demonstrate, by electrospray tandem mass spectrometry that TGase 5 is acetylated at the N-terminal end. Moreover, in situ measurement of TGase activity shows that endogenous TGase 5 is active upon treatment with phorbol acetate, and the enzyme co-localises with vimentin intermediate filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号