共查询到20条相似文献,搜索用时 0 毫秒
1.
In earlier work in which electrorotation was used to apply external torque to tethered cells of the bacterium Escherichia coli, it was found that the torque required to force flagellar motors backward was considerably larger than the torque required to stop them. That is, there appeared to be substantial barrier to backward rotation. Here, we show that in most, possibly all, cases this barrier is an artifact due to angular variation of the torque applied by electrorotation, of the motor torque, or both; the motor torque appears to be independent to speed or to vary linearly with speed up to speeds of tens of Hertz, in either direction. However, motors often break catastrophically when driven backward, so backward rotation is not equivalent to forward rotation. Also, cells can rotate backward while stalled, either in randomly timed jumps of 180 degrees or very slowly and smoothly. When cells rotate slowly and smoothly backward, the motor takes several seconds to recover after electrorotation is stopped, suggesting that some form of reversible damage has occurred. These findings do not affect the interpretation of electrorotation experiments in which motors are driven rapidly forward. 相似文献
2.
The purpose of this work was to study the changes in rotation rate of the bacterial motor and to try to discriminate between various sources of these changes with the aim of understanding the mechanism of force generation better. To this end Escherichia coli cells were tethered and videotaped with brief stroboscopic light flashes. The records were scanned by means of a computerized motion analysis system, yielding cell size, radius of rotation, and accumulated angle of rotation as functions of time for each cell selected. In conformity with previous studies, fluctuations in the rotation rate of the flagellar motor were invariably found. Employing an exclusively counterclockwise rotating mutant ("gutted" RP1091 strain) and using power spectral density, autocorrelation and residual mean square angle analysis, we found that a simple superposition of rotational diffusion on a steady rotary motion is insufficient to describe the observed rotation. We observed two additional rotational components, one fluctuating (0.04-0.6 s) and one oscillating (0.8-7 s). However, the effective rotational diffusion coefficient obtained after taking these two components into account generally exceeded that calculated from external friction by two orders of magnitude. This is consistent with a model incorporating association and dissociation of force-generating units. 相似文献
3.
The output of a rotary motor is characterized by its torque and speed. We measured the torque-speed relationship of the flagellar rotary motor of Escherichia coli by a new method. Small latex spheres were attached to flagellar stubs on cells fixed to the surface of a glass slide. The angular speeds of the spheres were monitored in a weak optical trap by back-focal-plane interferometry in solutions containing different concentrations of the viscous agent Ficoll. Plots of relative torque (viscosity x speed) versus speed were obtained over a wide dynamic range (up to speeds of approximately 300 Hz) at three different temperatures, 22.7, 17.7, and 15.8 degrees C. Results obtained earlier by electrorotation (, Biophys. J. 65:2201-2216) were confirmed. The motor operates in two dynamic regimes. At 23 degrees C, the torque is approximately constant up to a knee speed of nearly 200 Hz, and then it falls rapidly with speed to a zero-torque speed of approximately 350 Hz. In the low-speed regime, torque is insensitive to changes in temperature. In the high-speed regime, it decreases markedly at lower temperature. These results are consistent with models in which torque is generated by a powerstroke mechanism (, Biophys. J. 76:580-587). 相似文献
4.
Bacterial flagellar motor is a highly ordered and complex supramolecular structure that powers rotation of flagella and serves as a type III export apparatus for flagellar assembly. Motor biogenesis represents a formidable example of self-assembly, but little is known about early steps of the motor structure formation. Here we used a combination of fluorescence microscopy techniques to dissect the order of the motor assembly in Escherichia coli cells, to map in vivo the underlying protein interactions and to investigate dynamics of protein exchange in the assembled motor structure. Our data suggest that motor self-assembly is initiated by oligomerization of the membrane export apparatus protein FlhA, which is followed by the recruitment of the MS ring component FliF and by the ordered association of other motor proteins. The assembly process combines the hierarchy with cooperativity, whereby the association of each subsequent motor structure stabilizes the growing assembly. Our results provide a novel and so far the most complete view of the early steps in flagellar motor assembly and improve understanding of the motor structure and regulation. 相似文献
5.
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer. 相似文献
6.
P Luger 《Biophysical journal》1988,53(1):53-65
This paper describes an analysis of microscopic models for the coupling between ion flow and rotation of bacterial flagella. In model I it is assumed that intersecting half-channels exist on the rotor and the stator and that the driving ion is constrained to move together with the intersection site. Model II is based on the assumption that ion flow drives a cycle of conformational transitions in a channel-like stator subunit that are coupled to the motion of the rotor. Analysis of both mechanisms yields closed expressions relating the torque M generated by the flagellar motor to the rotation rate v. Model I (and also, under certain assumptions, model II) accounts for the experimentally observed linear relationship between M and v. The theoretical equations lead to predictions on the relationship between rotation rate and driving force which can be tested experimentally. 相似文献
7.
Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. 总被引:3,自引:4,他引:3 下载免费PDF全文
Among the many proteins needed for assembly and function of bacterial flagella, FliG, FliM, and FliN have attracted special attention because mutant phenotypes suggest that they are needed not only for flagellar assembly but also for torque generation and for controlling the direction of motor rotation. A role for these proteins in torque generation is suggested by the existence of mutations in each of them that produce the Mot- (or paralyzed) phenotype, in which flagella are assembled and appear normal but do not rotate. The presumption is that Mot- defects cause paralysis by specifically disrupting functions essential for torque generation, while preserving the features of a protein needed for flagellar assembly. Here, we present evidence that the reported mot mutations in fliM and fliN do not disrupt torque-generating functions specifically but, instead, affect the incorporation of proteins into the flagellum. The fliM and fliN mutants are immotile at normal expression levels but become motile when the mutant proteins and/or other, evidently interacting flagellar proteins are overexpressed. In contrast, many of the reported fliG mot mutations abolish motility at all expression levels, while permitting flagellar assembly, and thus appear to disrupt torque generation specifically. These mutations are clustered in a segment of about 100 residues at the carboxyl terminus of FliG. A slightly larger carboxyl-terminal segment of 126 residues accumulates in the cells when expressed alone and thus probably constitutes a stable, independently folded domain. We suggest that the carboxyl-terminal domain of FliG functions specifically in torque generation, forming the rotor portion of the site of energy transduction in the flagellar motor. 相似文献
8.
R M Berry 《Biophysical journal》1993,64(4):961-973
A model is presented for the rotary motor that drives bacterial flagella, using the electrochemical gradient of protons across the cytoplasmic membrane. The model unifies several concepts present in previous models. Torque is generated by proton-conducting particles around the perimeter of the rotor at the base of the flagellum. Protons in channels formed by these particles interact electrostatically with tilted lines of charges on the rotor, providing "loose coupling" between proton flux and rotation of the flagellum. Computer simulations of the model correctly predict the experimentally observed dynamic properties of the motor. Unlike previous models, the motor presented here may rotate either way for a given direction of the protonmotive force. The direction of rotation only depends on the level of occupancy of the proton channels. This suggests a novel and simple mechanism for the switching between clockwise and counterclockwise rotation that is the basis of bacterial chemotaxis. 相似文献
9.
10.
Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. 总被引:5,自引:6,他引:5 下载免费PDF全文
Cells that overexpress MotA (encoded on a plasmid derived from pBR322) grow slowly because of proton leakage. We have traced this defect to the coexpression of a fusion protein consisting of 60 amino acids from the N terminus of MotB and 50 amino acids specified by pBR322. Mutations within the N terminus, known to abolish function when present in full-length MotB, reversed the growth defect. Growth also was normal when MotA was coexpressed with wild-type MotB or with a series of MotB N-terminal fragments. 相似文献
11.
A mutation in H-NS results in non-flagellation of Escherichia coli due to a reduced expression of the flhDC master operon. We found that the hns-negative strain restored its flagellation in the presence of flhDC, although the resulting strain was still non-motile. Since the intracelluar levels of motor components MotA, MotB, and FliG in the Deltahns strain were unaltered, the non-motility indicates that H-NS affects flagellar function as well as biogenesis. We obtained an insertion in ycgR, a putative gene encoding a protein of 244 amino acid residues, which suppresses the motility defect of hns-deficient cells. The abnormally low swimming speed of hns mutant cells was fully restored by an insertion in ycgR, as assessed with computer-assisted motion analysis. A similar suppressor phenotype was observed with a multicopy expression of yhjH, a putative gene encoding a polypeptide of 256 amino acid residues. Since the flagella of most hns-deficient cells were not rotating, except a few with reduced speed, the suppression appears to increase the number of rotating flagella as observed with tethered bacteria. The ycgR and yhjH genes contain the consensus sequence found among the class III promoters of the flagellar regulon, and their expression monitored with a lacZ fusion requires FlhDC. These findings suggest that ycgR and yhjH, together with H-NS, are involved in the motor function and constitute new members of the flagellar regulon. 相似文献
12.
DNA sequence analysis, gene product identification, and localization of flagellar motor components of Escherichia coli. 总被引:6,自引:17,他引:6 下载免费PDF全文
The Escherichia coli operon designated flaA contains seven flagellar genes; among them are two switch protein genes whose products are believed to interface with the motility and chemotaxis machinery of the cell. Complementation analysis using several plasmids carrying different portions of the flaA operon and analysis of expression of these plasmids in minicells allowed the identification of two flagellar gene products. The MotD (now called FliN) protein, a flagellar switch protein, was determined to have an apparent molecular weight of 16,000, and the FlaAI (FliL) protein, encoded by a previously unidentified gene, had an apparent molecular weight of 17,000. DNA sequence analysis of the motD gene revealed an open reading frame of 414 base pairs. There were two possible initiation codons (ATG) for motD translation, the first of which overlapped with the termination codon of the upstream gene, flaAII (fliN). The wild-type flaAI gene on the chromosome was replaced with a flaAI gene mutated in vitro. Loss of the flaAI gene product resulted in a nonmotile and nonflagellated phenotype. The subcellular location for both the MotD and FlaAI proteins was determined; the FlaAI protein partitioned exclusively in the insoluble fraction of a whole minicell sonic extract, whereas the MotD protein remained in both the soluble and insoluble fractions. In addition, we subcloned a 2.2-kilobase-pair DNA fragment capable of complementing the remaining four genes of the flaA operon (flbD [fliO], flaR [fliP], flaQ [fliQ], and flaP [fliR]). 相似文献
13.
Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. 总被引:13,自引:6,他引:13 下载免费PDF全文
During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella. 相似文献
14.
A M Lawn 《Journal of general microbiology》1977,101(1):112-130
The molecular weights of the flagellins of 13 strains of Escherichia coli, each with a different H antigen, were estimated using polyacrylamide gel electrophoresis. In each case only one major polypeptide was demonstrated, although some strains possessed apparently sheathed flagella. Considerable differences in the molecular weight of flagellin accompanied the previously described structural differences between flagella from strains with different H antigens. The relationship between flagellar diameter and the molecular weight of the corresponding flagellins was similar for both unsheathed and apparently sheathed flagella. Crosss-polymerization occurred between seed consisting of fragment of unsheathed flagella and flagellin solution from apparently sheathed flagella and vice versa. Co-polymerization of flagellin from unsheathed flagella and flagellin from apparently sheathed flagella was also demonstrated. These polymerization experiments indicate that the assembly pattern of flagellin molecules is probably the same in all E. coli flagella. The above and other evidence suggests that there is no true sheath, but that the differences in flagellar surface structure between different E. coli flagella are the result of differences in the superficial parts of the flagellin molecules. 相似文献
15.
Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli 下载免费PDF全文
Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H(+) or Na(+) into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions in pomA, pomB, motX, or motY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complemented fliG-null strains of the parent species but not fliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB, motX, and motY became weakly motile when the E. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins of V. cholerae and that the hybrid motors are driven by the proton motive force. 相似文献
16.
17.
Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. 总被引:7,自引:4,他引:3 下载免费PDF全文
Strains of Escherichia coli lacking all cytoplasmic chemotaxis proteins except CheY swim smoothly under most conditions. However, they tumble when exposed to acetate. Acetate coenzyme A synthetase (EC 6.2.1.1) was thought to be essential for this response. New evidence suggests that the tumbling is mediated instead by acetate kinase (EC 2.7.2.1), which might phosphorylate CheY via acetyl phosphate. In strains that were wild type for chemotaxis, neither acetate coenzyme A synthetase, acetate kinase, nor phosphotransacetylase (EC 2.3.1.8) (and thus acetyl phosphate) was required for responses to aspartate, serine, or sugars sensed by the phosphotransferase system. Thus, acetate-induced tumbling does not appear to play an essential role in chemotaxis in wild-type cells. 相似文献
18.
Two mutants of Escherichia coli strictly deficient in uridine-diphosphoglucose pyrophosphorylase activity (galU) were found to have very small numbers of flagellar filaments and hooks. In these mutants, both the rate of flagellin (flagellar protein) synthesis and the amount of messenger ribonucleic acid specific for flagellin were considerably lower than in the parental strains. Motile revertants from the galU mutants were isolated and were found to carry a suppressor mutation, which was mapped in the flaH cistron. These strains formed swarms under conditions of catabolite repression; their intracellular concentration of cyclic adenosine 5'-monophosphate was the same as that in the parental strains. These results suggest that the outer membrane affects flagellar formation through the flaH gene product. 相似文献
19.
20.
Genes for the hook-basal body proteins of the flagellar apparatus in Escherichia coli. 总被引:16,自引:14,他引:2 下载免费PDF全文
Of the more than 30 genes required for flagellar function, 6 are located between pyrC and ptsG on the Escherichia coli genetic man. This cluster of genes is called flagellar region I. Four-point transductional crosses were used to establish the position and order of the region I flagellar genes with respect to the outside markers ptsG and pyrC. Bacteriophage lambda-E. coli hybrids that contained most of the genes necessary for flagellar formation were constructed. The properties of specific hybrids that carried the region I fla genes were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the lambda hybrids demonstrated the existence of at least six flagellar-specific cistrons. These directed the synthesis of polypeptides with the following apparent molecular weights: flaV, 11,000; flaK, 42,000; flaL, 30,000 and 27,000; flaM, 38,000; flS, 60,000; and flaT, 35,000. Plasmid ColE1-E. coli hybrids with region I flagellar genes were also used to program the synthesis of polypeptides in minicell-producing strains. The polypeptides synthesized in these experiments were identical to polypeptides of the hook-basal body structure and helped to confirm the assignment of genes to specific polypeptides. The synthesis of all of these polypeptides was regulated by the same mechanism that regulates the synthesis of other flagellar-related structural components. 相似文献