共查询到20条相似文献,搜索用时 15 毫秒
1.
Hoi Hin Kwok Wai Yee Ng Mildred Sze Ming Yang Nai Ki Mak Ricky Ngok Shun Wong Patrick Ying Kit Yue 《Free radical biology & medicine》2010,48(3):437-445
Ginsenosides, the active components of the famous Chinese herb ginseng, have been suggested to possess cardiovascular-protective effects. The mechanism of ginsenosides is believed to be associated with their ability to prevent cellular oxidative stress. The purpose of this study was to explore the cytoprotective effects of the ginsenoside protopanaxatriol (PPT) on hydrogen peroxide (H2O2)-induced endothelial cell injury and cell death. Pretreatment of human umbilical vein endothelial cells (HUVECs) with PPT for 24 h was able to protect the cells against H2O2-induced injury. In addition to cell death, pretreatment with PPT could also reduce H2O2-induced DNA damage, overactivation of the DNA repair enzyme PARP-1, and concomitant depletion of the intracellular substrate NAD+. Furthermore, PPT could reverse the decrease in ATP/ADP ratio caused by H2O2. The metabolism of glutathione was also changed. H2O2 could induce a significant decrease in GSH level resulting in a decrease in the GSH/GSSG ratio. This could be prevented by pretreatment with PPT. The action was associated with increasing activities of the GSH-metabolizing enzymes glutathione reductase and glutathione peroxidase. These findings suggest that the ginsenoside PPT could protect HUVECs against H2O2-induced cell death via its action against oxidative stress, which may be responsible for the cardiovascular-protective action of ginseng. 相似文献
2.
Jimena S. Beltrame Leopoldina Scotti Micaela S. Sordelli Vanesa A. Cañumil Ana M. Franchi Fernanda Parborell María L. Ribeiro 《Journal of cellular physiology》2019,234(5):6274-6285
Spiral artery remodeling at the maternal–fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast–endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast–endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8–EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast–endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal–fetal interface. 相似文献
3.
Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing 总被引:5,自引:0,他引:5
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures. 相似文献
4.
Damaged endothelium is one of the pathological changes of the cerebral vasospastic vessels following subarachnoid hemorrhage. Our recent study shows that oxyhemoglobin (OxyHb) induces apoptosis in vascular endothelial cells. Apoptosis generally requires the action of various classes of proteases, including a family of cysteine proteases, known collectively as the caspases. This study was undertaken to investigate the activation of caspases and the efficacy of caspase inhibitors, z-IETD-fmk and z-LEHD-fmk, for oxyhemoglobin-induced apoptosis in vascular endothelial cells. Cultured bovine brain microvascular endothelial cells (passages 5-9) were used for this study. OxyHb (10 micromol/L) was added during the 24-72 h incubation with and without caspase-8 or - 9 inhibitors (z-IETD-fmk and z-LEHD-fmk). Counting surviving cells, DNA laddering, western blotting of poly(ADP-ribose) polymerase, and measurement of caspase activities were employed to confirm the cytotoxic effects of OxyHb and the protective effects of the caspase inhibitors. OxyHb produced cell detachment in a time-dependent manner and increased caspase-8 and -9 activities in the cells. z-IETD-fmk and z-LEHD-fmk (100 micromol/L) attenuated OxyHb-induced cell loss, DNA laddering, and proteolytic cleavage of PARP, although a lower concentration (10 micromol/L) of caspase inhibitors showed partial effects. OxyHb activates caspase-8 and -9 in cultured vascular endothelial cells, and blocking the action of the caspases with the inhibitors efficiently prevents loss of vascular endothelial cells from OxyHb-induced apoptosis in vitro. These results suggest that the caspase cascade participates in OxyHb-induced apoptosis. 相似文献
5.
Subramaniam D Ponnurangam S Ramamoorthy P Standing D Battafarano RJ Anant S Sharma P 《PloS one》2012,7(2):e30590
Background
Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway.Methodology/Principal Findings
In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA.Conclusion/Significance
Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers. 相似文献6.
7.
The antioxidant and metal-chelating effects of pyrrolidine dithiocarbamate (PDTC) have been extensively studied. PDTC prevents cell death induced by various insults. However, PDTC itself may cause cell death in selected experimental paradigms. PDTC induced bovine cerebral endothelial cell death. However, in serum-depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. The metal chelators bathocuproine disulfonic acid, o-phenanthroline, bathophenanthroline disulfonic acid, and N,N,N',N'-tetrakis(2-pyridyl-methyl)ethylenediamine (TPEN) prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper or zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper or zinc in serum may mediate the cytotoxic effect of PDTC. The potency of zinc for PDTC-induced endothelial cell death was greater than that of copper. Zn-EDTA did not block PDTC-induced cell death, whereas Ca-EDTA and Cu-EDTA were able to prevent this PDTC effect. PDTC increased the intracellular fluorescence of the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide, which was quenched by TPEN or various EDTA preparations but not by Zn-EDTA. Results suggest that an increase in intracellular zinc concentration is required in PDTC-induced cerebral endothelial cell death. 相似文献
8.
Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features 总被引:6,自引:0,他引:6
Mercié P Garnier O Lascoste L Renard M Closse C Durrieu F Marit G Boisseau RM Belloc F 《Apoptosis : an international journal on programmed cell death》2000,5(5):403-411
Objective. Cell death is generally classified into two large categories: apoptosis, which represents active, physiological programmed cell death, and necrosis, which represents passive cell death without underlying regulatory mechanisms. Apoptosis plays an important role in tissue homeostasis and its role in endothelium integrity can be influenced by the functional status of endothelial cells. Homocysteine, a sulfated amino-acid product of methionine demethylation, is an independent risk factor for vascular disease (arterial and venous thombosis). Our goal was to investigate the thiol-derivatives effect on the endothelial cell apoptosis. Methods. Three parameters were measured: mitochondrial membrane potential using DiOC6(3) as the probe, DEVDase activation, and phosphatidylserine exposure on the cell surface with fluorosceinated annexin V labeling which allows apoptosis to be distinguished from necrosis. Results. Homocysteine-thiolactone induced endothelial cell apoptosis in a concentration-dependent manner (range: 50–200 M), independently of the caspase pathway. Only homocysteine-thiolactone, among the thiol derivatives tested, induced apoptosis. Apoptosis was not influenced by the serum concentration in culture medium, suggesting that the observed apoptotic process could occur in vivo. None of the inhibitors used (e.g., leupeptin, fumosinin Bl, catalase, or z-VAD-fmk) was able to prevent homocysteine-induced apoptosis of vascular endothelial cells. Conclusion. The apoptosis of vascular endothelial cells induced by high concentration of homocysteine-thiolactone might be one step atherosclerotic cardiovascular disease, and contribute to its complication. 相似文献
9.
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms. 相似文献
10.
Jian Wu Yuefeng Sun Yannan Zhao Jian Zhang Lilan Luo Meng Li Jinlong Wang Hong Yu Guifu Liu Liusha Yang Guosheng Xiong Jian-Min Zhou Jianru Zuo Yonghong Wang Jiayang Li 《Cell research》2015,25(5):621-633
Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants. 相似文献
11.
Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and suppresses neovascularization and tumor growth. However, the inhibitory mechanism of endostatin in human endothelial cells has not been characterized yet. Electron microscopic analysis revealed that endostatin induced formation of numerous autophagic vacuoles in endothelial in 6 to 24 h after treatment. Moreover, there was only a 2- to 3-fold increase in intracellular reactive oxygen species after endostatin treatment. Endostatin-induced cell death was not prevented by antioxidants (vitamin C, vitamin E, or propyl gallate) or caspase inhibitors, suggesting that the increase of oxidative stress or the activation of caspases may not be the crucial factors in the anti-angiogenic mechanism of endostatin. However, the cytotoxicity of endostatin was significantly reduced by 3-methyladenine (a specific inhibitor of autophagy) and serine and cysteine lysosomal protease inhibitors (leupeptin and aprotinin). Taken together, these results suggest that in human endothelial cells: (1) endostatin predominantly causes autophagic, rather than apoptotic, cell death, (2) endostatin-induced autophagic cell death occurs in the absence of caspase activation and through an oxidative-independent pathway, and (3) endostatin-induced "autophagic cell death" or "type 2 physiological cell death" is regulated by serine and cysteine lysosomal proteases. 相似文献
12.
Lysophosphatidic acid and receptor-mediated activation of endothelial nitric-oxide synthase 总被引:2,自引:0,他引:2
Both lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are platelet-derived phospholipids that elicit diverse biological responses. In endothelial cells, S1P stimulates the EDG-1 receptor-mediated activation of the endothelial isoform of nitric oxide synthase (eNOS), but the role of LPA in eNOS regulation is less well understood. We now report that LPA treatment of bovine aortic endothelial cells (BAEC) activates eNOS enzyme activity in a pathway that involves phosphorylation of eNOS on serine 1179 by protein kinase Akt. In contrast to the cellular responses elicited by S1P in COS-7 cells, LPA can stimulate the activation of eNOS and Akt independently of EDG-1 receptor transfection. LPA-stimulated enzyme activation was significantly attenuated in an eNOS mutant lacking the site that is phosphorylated by kinase Akt (eNOS S1179A). In BAEC, activation of eNOS by LPA is completely blocked by pertussis toxin, by the intracellular calcium chelator BAPTA (1,2-bis(aminophenoxy) ethane-N,N,N',N'-tetraacetic acid), and by the phosphoinositide 3-kinase (PI3-K) inhibitor wortmannin, but is unaffected by U0126, an inhibitor of mitogen-activated protein (MAP) kinase pathways. Analysis of the LPA dose response for eNOS activation reveals an EC(50) of approximately 40 nM, a concentration well below the potency of LPA at the EDG-1 receptor. Taken together, these results indicate that LPA potently activates eNOS in BAEC in a pathway distinct from the EDG-1 receptor, but mediated by a similar receptor-mediated pathway dependent on pertussis toxin-sensitive G proteins and involving activation of the PI3-K/Akt pathway. These studies have identified a role for the phospholipid LPA in eNOS activation, and point out the complementary role of distinct platelet-derived lipids in endothelial signaling pathways. 相似文献
13.
Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways 总被引:8,自引:0,他引:8
The rate of gossypol-induced apoptosis does not correlate very well with the same dose of gossypol-induced cell growth inhibition, indicating an anti-proliferative effect of gossypol. Using a co-immunoprecipitation assay, it was observed that the level of Bcl-X(L) protein bound to Bax was clearly lower than that of Bcl-2 protein at 5 micro M of gossypol treatment, and the level of Bim protein bound to Bcl-X(L) was lowered at 20 micro M of gossypol treatment for 24 h, implicating that gossypol inhibits the heterodimerization of Bcl-X(L) with Bax and Bim. Gossypol-induced apoptosis is partly suppressed by as low as 0.5 micro M, but not abolished by as high as 50 micro M of a broad range caspase inhibitor, Z-VAD-FMK, suggesting that gossypol-induced apoptosis is both caspase-dependent and -independent. Furthermore, the release of apoptosis inducing factor (AIF), which triggers caspase-independent apoptosis, from mitochondria to cytosol was observed in PC-3 cells exposed to gossypol treatment. In conclusion, gossypol inhibits the proliferation and induces apoptosis in PC-3 cells. Gossypol-induced apoptosis is, at least, through inhibiting the heterodimerization of Bcl-X(L)/Bcl-2 with pro-apoptosis molecules, followed by a caspase-dependent and -independent process which involves the release of AIF from the mitochondria to cytosol. 相似文献
14.
Seul KH Kang KY Lee KS Kim SH Beyer EC 《Biochemical and biophysical research communications》2004,319(4):1144-1151
Gap junction channels formed of connexins directly link the cytoplasm of adjacent cells and have been implicated in intercellular signaling that may regulate the functions of vascular cells. To facilitate connexin manipulation and analysis of their roles in adult endothelial cells, we developed adenoviruses containing the vascular connexins (Cx37, Cx40, and Cx43). We infected cultured human umbilical vein endothelial cells with control or connexin adenoviruses. Connexin expression was verified by immunoblotting and immunofluorescence. Infection with the Cx37 adenovirus (but not control or other connexin adenoviruses) led to a dose-dependent death of the endothelial cells that was partially antagonized by the gap junction blocker alpha-glycyrrhetinic acid and altered the intercellular transfer of Lucifer yellow and neurobiotin. Cell morphology, Annexin V and TUNEL staining, and caspase 3 assays all implicated apoptosis in the cell death. These data suggest that connexin-specific alterations of intercellular communication may modulate endothelial cell growth and death. 相似文献
15.
16.
The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation 总被引:4,自引:0,他引:4
Martini JF Piot C Humeau LM Struman I Martial JA Weiner RI 《Molecular endocrinology (Baltimore, Md.)》2000,14(10):1536-1549
We asked whether the antiangiogenic action of 16K human PRL (hPRL), in addition to blocking mitogen-induced vascular endothelial cell proliferation, involved activation of programmed cell death. Treatment with recombinant 16K hPRL increased DNA fragmentation in cultured bovine brain capillary endothelial (BBE) and human umbilical vein endothelial (HUVE) cells in a time- and dose-dependent fashion, independent of the serum concentration. The activation of apoptosis by 16K hPRL was specific for endothelial cells, and the activity of the peptide could be inhibited by heat denaturation, trypsin digestion, and immunoneutralization, but not by treatment with the endotoxin blocker, polymyxin-B. 16K hPRL-induced apoptosis was correlated with the rapid activation of caspases 1 and 3 and was blocked by pharmacological inhibition of caspase activity. Caspase activation was followed by inactivation of two caspase substrates, poly(ADP-ribose) polymerase (PARP) and the inhibitor of caspase-activated deoxyribonuclease (DNase) (ICAD). Furthermore, 16K hPRL increased the conversion of Bcl-X to its proapoptotic form, suggesting that the Bcl-2 protein family may also be involved in 16K hPRL-induced apoptosis. These findings support the hypothesis that the antiangiogenic action of 16K hPRL includes the activation of programmed cell death of vascular endothelial cells. 相似文献
17.
《Phytomedicine》2021
BackgroundOvarian cancer is one of the most common gynecological malignancies in the world. Daphnetin (Daph) was previously reported to possess antitumor potential, but its potential and molecular mechanisms in ovarian cancer remain poorly understood.PurposeIn the current study, we aimed to explore the antitumor effect and detailed mechanisms of Daph in ovarian cancer cells.MethodsThe cytotoxic effect of Daph on ovarian cells was determined in vitro and in vivo. Cell growth, proliferation, apoptosis and ROS generation were measured by CCK8 assays, colony formation assays and flow cytometry. Western blotting was used to evaluate the related signal proteins. Immunofluorescence and transmission electron microscopy were used to evaluate markers of autophagy and autophagic flux. The antitumor effects were observed in the A2780 xenograft model. Moreover, Daph-induced autophagy was observed by enhanced LC3-II accumulation and endogenous LC3 puncta, and an autophagy inhibitor further enhanced the antitumor efficacy of Daph, which indicated that the cytoprotective role of autophagy in ovarian cancer.ResultsWe found that Daph exhibited antitumor effects by inducing ROS-dependent apoptosis in ovarian cancer, which could be reversed by N-acetyl cysteine (NAC). The AMPK/Akt/mTOR pathway was involved in Daph-mediated cytoprotective autophagy, and when Daph-mediated the expression level of AMPK and autophagy were blocked, there was robust inhibition of cell proliferation and induction of apoptosis. In addition, in the A2780 xenograft model, combined treatment with Daph and an autophagy inhibitor showed obvious synergetic effects on the inhibition of cell viability and promotion of apoptosis, without any side effects.ConclusionOur results suggest that Daph triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Moreover, the combination of Daph and autophagy inhibitor may be a potential therapeutic strategy for ovarian cancer. 相似文献
18.
Proteolysis mediated by the ubiquitin-proteasome system has been implicated in the regulation of programmed cell death. Here we investigated the differential effects of proteasomal inhibitors on the viability of proliferating and quiescent primary endothelial cells in vitro and in vivo. Subconfluent, proliferating cells underwent carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) -induced apoptosis at low concentrations (EC(50)=24 nM), whereas at least 340-fold higher concentrations of PSI were necessary to obtain the same effect in confluent, contact-inhibited cells. PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis. When applied to the embryonic chick chorioallantoic membrane, a rapidly expanding tissue, PSI induced massive apoptosis also in vivo. PSI treatment of the CAM led to the formation of areas devoid of blood flow due to the induction of apoptosis in endothelial and other cells and to the collapse of capillaries and first order vessels. Our results demonstrate that proteasomal inhibitors such as PSI may prove effective as novel anti-angiogenic and anti-neoplastic substances. 相似文献
19.
Yukitoshi Takemura Kiyotoshi Satoh Yoshitaka Sekido Shunichiro Kubota 《Biochemical and biophysical research communications》2010,394(2):249-687
Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma. 相似文献