首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenic bacterium Pseudomonas aeruginosa uses acyl-HSL quorum-sensing signals to regulate genes controlling virulence and biofilm formation. We found that paraoxonase 1 (PON1), a mammalian lactonase with an unknown natural substrate, hydrolyzed the P. aeruginosa acyl-HSL 3OC12-HSL. In in vitro assays, mouse serum-PON1 was required and sufficient to degrade 3OC12-HSL. Furthermore, PON2 and PON3 also degraded 3OC12-HSL effectively. Serum-PON1 prevented P. aeruginosa quorum-sensing and biofilm formation in vitro by inactivating the quorum-sensing signal. Although 3OC12-HSL production by P. aeruginosa was important for virulence in a mouse sepsis model, Pon1-knock-out mice were paradoxically protected. These mice showed increased levels of PON2 and PON3 mRNA in epithelial tissues suggesting a possible compensatory mechanism. Thus, paraoxonase interruption of bacterial communication represents a novel mechanism to modulate quorum-sensing by bacteria. The consequences for host immunity are yet to be determined.  相似文献   

2.
3.
Acyl-homoserine lactone (HSL) quorum sensing molecules play an important role in regulation of virulence gene expression in Pseudomonas aeruginosa. Here, we show that 3O-C(12)-HSL can disrupt barrier integrity in human epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER), increased paracellular flux, reduction in the expression and distribution of ZO-1 and occludin, and reorganization of F-actin. P. aeruginosa 3O-C(12)-HSL activate p38 and p42/44 kinases, and inhibition of these kinases partly prevented 3O-C(12)-HSL-induced changes in TER, paracellular flux and expression of occludin and ZO-1. These findings demonstrate that P. aeruginosa 3O-C(12)-HSL can modulate tight junction integrity of Caco-2 cells.  相似文献   

4.
5.
Pseudomonas aeruginosa is a gram-negative bacterium that causes serious illnesses, particularly in immunocompromised individuals, often with a fatal outcome. The finding that the acylated homoserine lactone quorum sensing (QS) system controls the production of virulence factors in P. aeruginosa makes this system a possible target for antimicrobial therapy. It has been suggested that an N-(3-oxododecanoyl)-homoserine lactone (3O-C12-HSL) antagonist, a QS blocker (QSB), would interfere efficiently with the quorum sensing system in P. aeruginosa and thus reduce the virulence of this pathogen. In this work, a mathematical model of the QS system in P. aeruginosa has been developed. The model was used to virtually add 3O-C12-HSL antagonists that differed in their affinity for the receptor protein and for their ability to mediate degradation of the receptor. The model suggests that very small differences in these parameters for different 3O-C12-HSL antagonists can greatly affect the success of QSB based inhibition of the QS system in P. aeruginosa. Most importantly, it is proposed that the ability of the 3O-C12-HSL antagonist to mediate degradation of LasR is the core parameter for successful QSB based inhibition of the QS system in P. aeruginosa. Finally, this study demonstrates that QSBs can shift the system to a low steady state, corresponding to an uninduced state and thus, suggests that the use of 3O-C12-HSL antagonists may constitute a promising therapeutic approach against P. aeruginosa involved infections.  相似文献   

6.
7.
8.
The paraoxonase (PON) enzyme family, comprising PON1, PON2, and PON3, are antioxidant enzymes that degrade oxidised phospholipids. We describe the immunohistochemical localisation of the PON proteins in the normal mouse. Antibodies were obtained by inoculating rabbits with peptides derived from specific sequences of mature PONs. PON1 and PON3 were detected in the skin external epithelium, acini of the sebaceous glands, tongue epithelium, acini of the submandibular gland, surface epithelia of the stomach and the intestine, hepatocytes, exocrine pancreas acini, fibre tracts of the encephalon and the spinal cord, skeletal and cardiac muscle, eye lens epithelium and retinal layers, adipocytes, chondrocytes, epithelial cells of the trachea and bronchiole, ovary follicular fluid, seminiferous tubules, spermatozoa, and kidney proximal tubules. PON2 expression was weaker than that of PON1 and PON3, and was absent in some of the tissues studied, such as submandibular gland, nerve cells, and adipocytes. In muscle cells, PON2 expression was restricted to the endomysium. Apolipoprotein A-I did not colocalise with PONs, suggesting local synthesis. This study provides an experimental model to investigate the role played by these enzymes as antioxidants and their relationship with the development of a variety of diseases.  相似文献   

9.
Yang F  Wang LH  Wang J  Dong YH  Hu JY  Zhang LH 《FEBS letters》2005,579(17):3713-3717
Acyl-homoserine lactone (AHL) quorum sensing signals play a key role in synchronizing virulence gene expression in Pseudomonas aeruginosa, which could cause fatal bloodstream infections. We showed that AHL inactivation activity, albeit with variable efficiency, was conserved in the serum samples of all the 6 tested mammalian animals. High-performance liquid chromatography and mass spectrometry analyses revealed that mammalian sera had a lactonase-like enzyme(s), which hydrolyzed the lactone ring of AHL to produce acyl homoserine, with enzyme properties reminiscent of paraoxonases (PONs). We further showed that the animal cell lines expressing three mouse PON genes, respectively, displayed strong AHL degradation activities.  相似文献   

10.
N-3-oxo-dodecanoyl-homoserine lactone (3OC(12)-HSL) is the main quorum sensing (QS) signal produced by the human pathogen Pseudomonas aeruginosa, a major cause of hard-to-treat nosocomial infections and years-lasting chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. 3OC(12)-HSL-dependent QS is considered a promising target for novel anti-pseudomonads drugs. However, the screening systems employed to date for the identification of QS inhibitors (QSI) were aimed at the identification of inhibitors of 3OC(12)-HSL signaling rather than of the synthesis or the export of this molecule. Moreover, the low concentration of 3OC(12)-HSL in CF sputum has hampered large scale studies aimed at addressing the role of this molecule in the CF lung infection. Here we describe the construction and characterization of PA14-R3, a new whole-cell biosensor for the quantitative detection of 3OC(12)-HSL. PA14-R3 provides fast and direct quantification of 3OC(12)-HSL over a wide range of concentrations (from pM to μM), and proved to be an easy-to-handle, cost-effective and reliable biosensor for high-throughput screening of 3OC(12)-HSL levels in samples of different origin, including CF sputum. Moreover, the specific features of PA14-R3 made it possible to develop and validate a novel high-throughput screening system for QSI based on the co-cultivation of PA14-R3 with the PA14 wild-type strain. With respect to previous screening systems for QSI, this approach has the advantage of being cost-effective and allowing the identification of compounds targeting, besides 3OC(12)-HSL signaling, any cellular process critical for QS response, including 3OC(12)-HSL synthesis and secretion.  相似文献   

11.
We studied the quorum sensing (QS) system and the related homoserine lactones (HSLs) observing Pseudomonas aeruginosa invasion using the epithelial cell monolayer penetration assay model. Compared to the PAO1 wild-type, the QS mutants, DeltalasI and DeltarhlI, were compromised in their capacity to invade. The decreased invasiveness of DeltarhlI was restored by adding 100 microM exogenous C(4)-HSL. However, the decreased invasiveness of an efflux mutant, DeltamexAB-oprM, was not restored in the presence of exogenous HSLs. The QS system partially plays a role in P. aeruginosa invasion; however, C(4)-HSL and 3-O-C(12)-HSL are not the essential determinants for invasiveness for P. aeruginosa.  相似文献   

12.
群体感应是细菌根据细胞密度变化调控基因表达的一种调节机制。铜绿假单胞菌中QS系统由lasI和rhlI合成的信号分子3OC12-HSL和C4-HSL以及各自的受体蛋白LasR、RhlR组成,它们以级联方式调控多个基因表达。【目的】研究细菌群体感应(QS)对聚羟基脂肪酸酯合成的调控。【方法】利用铜绿假单胞菌PAO1及其QS突变株为材料通过气相色谱、荧光定量PCR在生理和分子水平上研究QS对聚羟基脂肪酸酯合成的调控。【结果】QS信号分子合成抑制剂阿奇霉素处理铜绿假单胞菌PAO1和QS突变株导致胞内PHA积累量显著减少;铜绿假单胞菌PAO1中C4-HSL合成酶基因rhlI缺失突变株PAO210胞内PHA积累量与野生型无差别;而3OC12-HSL合成酶基因lasI缺失突变株PAO55、3OC12-HSL受体合成酶基因lasR缺失突变株PAO56以及lasI/lasR双缺失突变株PAO57胞内PHA含量与野生型相比明显减少;lasI和lasR的突变株体内PHA合成酶基因phaC1的表达量显著降低,信号分子3OC12-HSL回补实验使phaC1的表达量可恢复到野生株水平,但只可部分恢复lasI缺失导致的胞内PHA合成。【结论】由此推测,铜绿假单胞菌群体感应系统中lasI/lasR系统参与胞内聚羟基脂肪酸酯合成的调控。  相似文献   

13.
14.
15.
16.
The human paraoxonase 2 (PON2) has been described as a highly specific lactonase hydrolysing the quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL) and having secondary esterase but not phosphotriesterase activity, in contrast with the related enzymes PON1 and PON3. It has been suggested that PON2 enzyme activity is dependent on glycosylation and its N-terminal region has been recently demonstrated to be a transmembrane domain mediating association to membranes. In the present study we describe a mutated form of PON2, lacking the above N-terminal region, which has been further stabilized by the insertion of six amino acidic substitutions. The engineered version, hence forth called rPON2, has been over-expressed in E.coli, refolded from inclusion bodies and purified, yielding an enzyme with the same characteristics as the full length enzyme. Therefore the first conclusion of this work was that the catalytic activity is independent from the N-terminus and protein glycosylation. The kinetic characterization confirmed the primary activity on 3OC12-HSL; accordingly, in vitro experiments of inhibition of the biofilm formed by Pseudomonas aeruginosa (PAO1) have demonstrated that rPON2 is more effective than PON1. In addition, we observed small but significant activity against organophosphorothiotes pesticides, m-parathion, coumaphos and malathion.The availability of fair amount of active protein allowed to pinpoint, by mass-spectrometry, ubiquitination of Lys 168 induced in rPON2 by HeLa extract and to correlate such post-translational modification to the modulation of catalytic activity. A mutational analysis of the modified residue confirmed the result.  相似文献   

17.
18.
Culture of airway epithelial cells is a useful model to investigate physiology of airway epithelia and airway disease mechanisms. In vitro models of airway epithelial cells are established for various species. However, earlier published method for isolation and culture of equine tracheal epithelial cells requires significant improvements. In this report, the development of a procedure for efficient isolation, characterization, culture, and passage of primary equine tracheal epithelial cells are described. Epithelial cells were isolated from adult equine trachea by exposing and stripping the mucosal epithelium from the adjacent connective tissue and smooth muscle. The tissue was minced and dissociated enzymatically using 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA) solution for 2 h at 37 degrees C. Cells were collected by sieving and centrifugation, and contaminating fibroblasts were removed by differential adhesion. This procedure resulted in a typical yield of 1 x 10(7) cytokeratin-positive epithelial cells per gram tracheal lining tissue. Viability was 95% by trypan blue exclusion and isolates contained approximately 94% cytokeratin-positive cells of epithelial origin. Cells seeded at a density of 6.9 x 10(4) cells/cm(2) in serum-free airway epithelial cell growth medium formed monolayers near confluency within a week. Confluent cells were dissociated using dispase II and first passages (P1) and second passages (P2) were successfully established in serum-free medium. Collagen coating of tissue culture flask was not required for cell adhesion, and cultures could be maintained at the level of P2 over 30 d. In the present study, we could establish a high-yield protocol for isolation and culture of equine tracheal epithelial cells that can serve for in vitro/ex vivo studies on the (patho-)physiology of equine airway disease as well as pharmacological and toxicological targets relevant to airway diseases.  相似文献   

19.
Quorum sensing is an important mechanism for the regulation of genes in many Gram-negative and Gram-positive bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, the absence of one or more components of the quorum-sensing system results in a significant reduction in virulence. Recent advances in the past year have demonstrated that the quorum-sensing signal molecule 3O-C(12)-HSL is also a potent stimulator of multiple eukaryotic cells and thus may alter the host response during P. aeruginosa infections. Therefore, via the regulation of multiple factors and the production of 3O-C(12)-HSL, quorum-sensing systems have a significant effect on the virulence of the bacteria and also on how the host responds to P. aeruginosa infections.  相似文献   

20.
Pseudomonas aeruginosa has two well-characterized quorum-sensing systems, Las and Rhl. These systems are composed of LuxR-type proteins, LasR and RhlR, and two acyl homoserine lactone (AHL) synthases, LasI and RhlI. LasI catalyzes the synthesis of N-(3-oxododecanoyl)homoserine lactone (3O-C12-HSL), whereas RhlI catalyzes the synthesis of N-butyryl-homoserine lactone. There is little known about the importance of AHLs in vivo and what effects these molecules have on eukaryotic cells. In order to understand the role of AHLs in vivo, we first tested the effects that deletions of the synthase genes in P. aeruginosa had on colonization of the lung. We demonstrate that in an adult mouse acute-pneumonia model, deletion of the lasI gene or both the lasI and rhlI genes greatly diminished the ability of P. aeruginosa to colonize the lung. To determine whether AHLs have a direct effect on the host, we examined the effects of 3O-C12-HSL injected into the skin of mice. In this model, 3O-C(12)-HSL stimulated a significant induction of mRNAs for the cytokines interleukin-1alpha (IL-1alpha) and IL-6 and the chemokines macrophage inflammatory protein 2 (MIP-2), monocyte chemotactic protein 1, MIP-1beta, inducible protein 10, and T-cell activation gene 3. Additionally, dermal injections of 3O-C12-HSL also induced cyclooxygenase 2 (Cox-2) expression. The Cox-2 enzyme is important for the conversion of arachidonic acid to prostaglandins and is associated with edema, inflammatory infiltrate, fever, and pain. We also demonstrate that 3O-C12-HSL activates T cells to produce the inflammatory cytokine gamma interferon and therefore potentially promotes a Th1 environment. Induction of these inflammatory mediators in vivo is potentially responsible for the significant influx of white blood cells and subsequent tissue destruction associated with 3O-C12-HSL dermal injections. Therefore, the quorum-sensing systems of P. aeruginosa contribute to its pathogenesis both by regulating expression of virulence factors (exoenzymes and toxins) and by inducing inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号