首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background  

DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations.  相似文献   

2.
Array-based comparative genomic hybridization (aCGH) enables the measurement of DNA copy number across thousands of locations in a genome. The main goals of analyzing aCGH data are to identify the regions of copy number variation (CNV) and to quantify the amount of CNV. Although there are many methods for analyzing single-sample aCGH data, the analysis of multi-sample aCGH data is a relatively new area of research. Further, many of the current approaches for analyzing multi-sample aCGH data do not appropriately utilize the additional information present in the multiple samples. We propose a procedure called the Fused Lasso Latent Feature Model (FLLat) that provides a statistical framework for modeling multi-sample aCGH data and identifying regions of CNV. The procedure involves modeling each sample of aCGH data as a weighted sum of a fixed number of features. Regions of CNV are then identified through an application of the fused lasso penalty to each feature. Some simulation analyses show that FLLat outperforms single-sample methods when the simulated samples share common information. We also propose a method for estimating the false discovery rate. An analysis of an aCGH data set obtained from human breast tumors, focusing on chromosomes 8 and 17, shows that FLLat and Significance Testing of Aberrant Copy number (an alternative, existing approach) identify similar regions of CNV that are consistent with previous findings. However, through the estimated features and their corresponding weights, FLLat is further able to discern specific relationships between the samples, for example, identifying 3 distinct groups of samples based on their patterns of CNV for chromosome 17.  相似文献   

3.

Background

Array-based comparative genomic hybridization (aCGH) is a high-throughput method for measuring genome-wide DNA copy number changes. Current aCGH methods have limited resolution, sensitivity and reproducibility. Microarrays for aCGH are available only for a few organisms and combination of aCGH data with expression data is cumbersome.

Results

We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.

Conclusion

A novel method of gene resolution analysis of copy number variation (graCNV) yields high-resolution maps of DNA copy number changes and is applicable to a broad range of organisms for which commercial oligonucleotide expression microarrays are available. Due to the standardization of oligonucleotide microarrays, graCNV results can reliably be compared between laboratories and can easily be combined with gene expression data using the same platform.  相似文献   

4.
MOTIVATION: The careful normalization of array-based comparative genomic hybridization (aCGH) data is of critical importance for the accurate detection of copy number changes. The difference in labelling affinity between the two fluorophores used in aCGH-usually Cy5 and Cy3-can be observed as a bias within the intensity distributions. If left unchecked, this bias is likely to skew data interpretation during downstream analysis and lead to an increased number of false discoveries. RESULTS: In this study, we have developed aCGH.Spline, a natural cubic spline interpolation method followed by linear interpolation of outlier values, which is able to remove a large portion of the dye bias from large aCGH datasets in a quick and efficient manner. Conclusions: We have shown that removing this bias and reducing the experimental noise has a strong positive impact on the ability to detect accurately both copy number variation (CNV) and copy number alterations (CNA).  相似文献   

5.

Background

Large-scale high throughput studies using microarray technology have established that copy number variation (CNV) throughout the genome is more frequent than previously thought. Such variation is known to play an important role in the presence and development of phenotypes such as HIV-1 infection and Alzheimer's disease. However, methods for analyzing the complex data produced and identifying regions of CNV are still being refined.

Results

We describe the presence of a genome-wide technical artifact, spatial autocorrelation or 'wave', which occurs in a large dataset used to determine the location of CNV across the genome. By removing this artifact we are able to obtain both a more biologically meaningful clustering of the data and an increase in the number of CNVs identified by current calling methods without a major increase in the number of false positives detected. Moreover, removing this artifact is critical for the development of a novel model-based CNV calling algorithm - CNVmix - that uses cross-sample information to identify regions of the genome where CNVs occur. For regions of CNV that are identified by both CNVmix and current methods, we demonstrate that CNVmix is better able to categorize samples into groups that represent copy number gains or losses.

Conclusion

Removing artifactual 'waves' (which appear to be a general feature of array comparative genomic hybridization (aCGH) datasets) and using cross-sample information when identifying CNVs enables more biological information to be extracted from aCGH experiments designed to investigate copy number variation in normal individuals.  相似文献   

6.
拷贝数变异: 基因组多样性的新形式   总被引:1,自引:0,他引:1  
吴志俊  金玮 《遗传》2009,31(4):339-347
基因拷贝数变异是指DNA片段大小范围从kb到Mb的亚微观突变, 是一可能具有致病性、良性或未知临床意义的基因组改变。Fosmid末端配对序列比较策略、比较基因组杂交芯片是当前较多使用的检测手段。染色体非等位的同源重排、非同源突变和非b DNA结构是造成基因组拷贝数变异的重要原因。拷贝数变异可导致不同程度的基因表达差异, 对正常表型的构成及疾病的发生发展具有一定作用。文章在总结基因拷贝数变异的认识过程和研究策略的基础上, 分析了拷贝数变异的形成和作用机制, 介绍了第一代人类基因组拷贝数变异图谱, 阐述了拷贝数变异研究的临床意义, 提示在探索疾病相关的遗传变异时不能错失拷贝数变异这一基因组多样性的新形式。  相似文献   

7.
基因组拷贝数变异及其突变机理与人类疾病   总被引:1,自引:0,他引:1  
Du RQ  Jin L  Zhang F 《遗传》2011,33(8):857-869
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。  相似文献   

8.
Recent studies have revealed a new type of variation in the human genome encompassing relatively large genomic segments ( approximately 100 kb-2.5 Mb), commonly referred to as copy number variation (CNV). The full nature and extent of CNV and its frequency in different ethnic populations is still largely unknown. In this study we surveyed a set of 12 CNVs previously detected by array-CGH. More than 300 individuals from five different ethnic populations, including three distinct European, one Asian and one African population, were tested for the occurrence of CNV using multiplex ligation-dependent probe amplification (MLPA). Seven of these loci indeed showed CNV, i.e., showed copy numbers that deviated from the population median. More precise estimations of the actual genomic copy numbers for (part of) the NSF gene locus, revealed copy numbers ranging from two to at least seven. Additionally, significant inter-population differences in the distribution of these copy numbers were observed. These data suggest that insight into absolute DNA copy numbers for loci exhibiting CNV is required to determine their potential contribution to normal phenotypic variation and, in addition, disease susceptibility.  相似文献   

9.
Array comparative genomic hybridization (aCGH) is a powerful tool to detect relative DNA copy number at a resolution limited only by the coverage of bacterial artificial chromosomes (BACs) used to print the genomic array. The amount of DNA needed to perform a reliable aCGH analysis has been a limiting factor, especially on minute tissue samples where limited DNA is available. Here we report a simple, highly sensitive and reliable aCGH method to analyze samples of no more than 1 ng genomic DNA. The speed and simplicity of the technique are ideal for studies on small clinical samples such as needle biopsies.  相似文献   

10.
Array-based comparative genomic hybridization (aCGH) using bacterial artificial chromosomes (BAC) is a powerful method to analyze DNA copy number aberrations of the entire human genome. In fact, CGH and aCGH have revealed various DNA copy number aberrations in numerous cancer cells and cancer cell lines examined so far. In this report, BAC aCGH was applied to evaluate the stability or instability of cell lines. Established cell lines have greatly contributed to advancements in not only biology but also medical science. However, cell lines have serious problems, such as alteration of biological properties during long-term cultivation. Firstly, we investigated two cancer cell lines, HeLa and Caco-2. HeLa cells, established from a cervical cancer, showed significantly increased DNA copy number alterations with passage time. Caco-2 cells, established from a colon cancer, showed no remarkable differences under various culture conditions. These results indicate that BAC aCGH can be used for the evaluation and validation of genomic stability of cultured cells. Secondly, BAC aCGH was applied to evaluate and validate the genomic stabilities of three patient's mesenchymal stem cells (MSCs), which were already used for their treatments. These three MSCs showed no significant differences in DNA copy number aberrations over their entire chromosomal regions. Therefore, BAC aCGH is highly recommended for use for a quality check of various cells before using them for any kind of biological investigation or clinical application.  相似文献   

11.
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.  相似文献   

12.
To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.  相似文献   

13.
人们很早就发现DNA拷贝数变异与特定染色体重组和基因组异常相关这一现象,但最近才知道它与疾病的相关联系。我们对拷贝数变异的原理、最新研究方法,及其与复杂疾病的相关性研究等进展进行了综述;总结了拷贝数变异研究所存在的问题;对拷贝数变异未来的研究重点和需要解决的问题进行了展望。  相似文献   

14.
Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice.  相似文献   

15.

Background

The detection and functional characterization of genomic structural variations are important for understanding the landscape of genetic variation in the chicken. A recently recognized aspect of genomic structural variation, called copy number variation (CNV), is gaining interest in chicken genomic studies. The aim of the present study was to investigate the pattern and functional characterization of CNVs in five characteristic chicken breeds, which will be important for future studies associating phenotype with chicken genome architecture.

Results

Using a commercial 385 K array-based comparative genomic hybridization (aCGH) genome array, we performed CNV discovery using 10 chicken samples from four local Chinese breeds and the French breed Houdan chicken. The female Anka broiler was used as a reference. A total of 281 copy number variation regions (CNVR) were identified, covering 12.8 Mb of polymorphic sequences or 1.07% of the entire chicken genome. The functional annotation of CNVRs indicated that these regions completely or partially overlapped with 231 genes and 1032 quantitative traits loci, suggesting these CNVs have important functions and might be promising resources for exploring differences among various breeds. In addition, we employed quantitative PCR (qPCR) to further validate several copy number variable genes, such as prolactin receptor, endothelin 3 (EDN3), suppressor of cytokine signaling 2, CD8a molecule, with important functions, and the results suggested that EDN3 might be a molecular marker for the selection of dark skin color in poultry production. Moreover, we also identified a new CNVR (chr24: 3484617–3512275), encoding the sortilin-related receptor gene, with copy number changes in only black-bone chicken.

Conclusions

Here, we report a genome-wide analysis of the CNVs in five chicken breeds using aCGH. The association between EDN3 and melanoblast proliferation was further confirmed using qPCR. These results provide additional information for understanding genomic variation and related phenotypic characteristics.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-934) contains supplementary material, which is available to authorized users.  相似文献   

16.
DNA copy number variation (CNV) represents a considerable source of human genetic diversity. Recently,1 a global map of copy number variation in the human genome has been drawn up which reveals not only the ubiquity but also the complexity of this type of variation. Thus, two human genomes may differ by more than 20 Mb and it is likely that the full extent of CNV still remains to be discovered. Nearly 3000 genes are associated with CNV. This high degree of variability with regard to gene copy number between two individuals challenges definitions of normality. Many CNVs are located in regions of complex genomic structure and this currently limits the extent to which these variants can be genotyped by using tagging SNPs. However, some CNVs are already amenable to genome-wide association studies so that their influence on human phenotypic diversity and disease susceptibility may soon be determined.  相似文献   

17.
DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based comparative genomic hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure and with random effects to allow for intertumoral variation, as well as intratumoral clonal variation. For ease of computation, we base estimation on a pseudolikelihood function. The method produces quantitative assessments of the likelihood of genetic alterations at each clone, along with a graphical display for simple visual interpretation. We assess the characteristics of the method through simulation studies and analysis of a brain tumor aCGH data set. We show that the pseudolikelihood approach is superior to existing methods both in detecting small regions of copy number alteration and in accurately classifying regions of change when intratumoral clonal variation is present. Software for this approach is available at http://www.biostat.harvard.edu/ approximately betensky/papers.html.  相似文献   

18.
Wang Y  Gu X  Feng C  Song C  Hu X  Li N 《Animal genetics》2012,43(3):282-289
The discovery of copy number variation (CNV) in the genome has provided new insight into genomic polymorphism. Studies with chickens have identified a number of large CNV segments using a 385k comparative genomic hybridization (CGH) chip (mean length >140 kb). We present a detailed CNV map for local Chinese chicken breeds and commercial chicken lines using an Agilent 400k array CGH platform with custom-designed probes. We identified a total of 130 copy number variation regions (CNVRs; mean length = 25.70 kb). Of these, 104 (80.0%) were novel segments reported for the first time in chickens. Among the 104 novel CNVRs, 56 (53.8%) of the segments were non-coding sequences, 65 (62.5%) showed the gain of DNA and 40 (38.5%) showed the loss of DNA (one locus showed both loss and gain). Overlapping with the formal selective sweep data and the quantitative trait loci data, we identified four loci that might be considered to be high-confidence selective segments that arose during the domestication of chickens. Compared with the CNVRs reported previously, genes for the positive regulation of phospholipase A2 activity were discovered to be significantly over-represented in the novel CNVRs reported here by gene ontology analysis. Availability of our results should facilitate further research in the study of the genetic variability in chicken breeds.  相似文献   

19.
Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells in which information regarding genetic heterogeneity is lost. Here we present a protocol that allows for the genome-wide copy number analysis of single nuclei isolated from mixed populations of cells. Single-nucleus sequencing (SNS), combines flow sorting of single nuclei on the basis of DNA content and whole-genome amplification (WGA); this is followed by next-generation sequencing to quantize genomic intervals in a genome-wide manner. Multiplexing of single cells is discussed. In addition, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 d from flow cytometry to sequence-ready DNA libraries.  相似文献   

20.
Genomic disorders are a clinically diverse group of conditions caused by gain, loss or re-orientation of a genomic region containing dosage-sensitive genes. One class of genomic disorder is caused by hemizygous deletions resulting in haploinsufficiency of a single or, more usually, several genes. For example, the heterozygous contiguous gene deletion on chromosome 22q11.2 causing DiGeorge syndrome involves at least 20-30 genes. Determining how the copy number variation (CNV) affects human variation and contributes to the aetiology and progression of various genomic disorders represents important questions for the future. Here, I will discuss the functional significance of one form of CNV, haploinsufficiency (i.e. loss of a gene copy), of DNA damage response components and its association with certain genomic disorders. There is increasing evidence that haploinsufficiency for certain genes encoding key players in the cells response to DNA damage, particularly those of the Ataxia Telangiectasia and Rad3-related (ATR)-pathway, has a functional impact. I will review this evidence and present examples of some well known clinically similar genomic disorders that have recently been shown to be defective in the ATR-dependent DNA damage response. Finally, I will discuss the potential implications of a haploinsufficiency-induced defective DNA damage response for the clinical management of certain human genomic disorders.Key Words: DNA damage response, ATR, haploinsufficiency, genomic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号