首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Prostaglandin endoperoxide H synthases and their arachidonate products have been implicated in modulating angiogenesis during tumor growth and chronic inflammation. Here we report the involvement of thromboxane A(2), a downstream metabolite of prostaglandin H synthase, in angiogenesis. A TXA(2) mimetic, U46619, stimulated endothelial cell migration. Angiogenic basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) increased TXA(2) synthesis in endothelial cells three- to fivefold. Inhibition of TXA(2) synthesis with furegrelate or CI reduced HUVEC migration stimulated by VEGF or bFGF. A TXA(2) receptor antagonist, SQ29,548, inhibited VEGF- or bFGF-stimulated endothelial cell migration. In vivo, CI inhibited bFGF-induced angiogenesis. Finally, development of lung metastasis in C57Bl/6J mice intravenously injected with Lewis lung carcinoma or B16a cells was significantly inhibited by thromboxane synthase inhibitors, CI or furegrelate sodium. Our data demonstrate the involvement of TXA(2) in angiogenesis and development of tumor metastasis.  相似文献   

2.
Pneumonectomy results in rapid compensatory growth of the remaining lung and also leads to increased flow and shear stress, which are known to stimulate endothelial nitric oxide synthase (eNOS). Nitric oxide is an essential mediator of vascular endothelial growth factor-induced angiogenesis, which should necessarily occur during compensatory lung growth. Thus our hypothesis is that eNOS is critical for compensatory lung growth. To test this, left pneumonectomy was performed in eNOS-deficient mice (eNOS-/-), and compensatory growth of the right lung was characterized throughout 14 days postpneumonectomy and compared with wild-type pneumonectomy and sham controls. Compensatory lung growth was severely impaired in eNOS-/- mice, as demonstrated by significant reductions in lung weight index, lung volume index, and volume of respiratory region. Also, pneumonectomy-induced increases in alveolar surface density and cell proliferation were prevented in eNOS-/- mice, indicating that eNOS plays a role in alveolar hyperplasia. Compensatory lung growth was also impaired in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Together, these results indicate that eNOS is critical for compensatory lung growth.  相似文献   

3.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are important proangiogenic factors in tumor procession. The autocrine and paracrine bFGF and the VEGF in tumor tissue can promote tumor angiogenesis, tumor growth, and metastasis. A VEGF/bFGF Complex Peptide (VBP3) was designed on the basis of epitope peptides from both VEGF and bFGF to elicit in vivo production of anti‐bFGF and anti‐VEGF antibodies. In this study, we reported on the production of recombinant VBP3 using high cell density fermentation. Fed‐batch fermentation for recombinant VBP3 production was conducted, and the production procedure was optimized in a 10‐L fermentor. The fraction of soluble VBP3 protein obtained reached 78% of total recombinant protein output under fed‐batch fermentation. Purified recombinant VBP3 could inhibit tumor cell proliferation in vitro and stimulate C57BL/6 mice to produce high titer anti‐VEGF and anti‐bFGF antibodies in vivo. A melanoma‐grafted mouse model and an immunohistochemistry assay showed that tumor growth and tumor angiogenesis were significantly inhibited in VBP3‐vaccinated mice. These results demonstrated that soluble recombinant VBP3 could be produced by large‐scale fermentation, and the product, with good immunogenicity, elicited production of high‐titer anti‐bFGF and anti‐VEGF antibodies, which could be used as a therapeutic tumor vaccine to inhibit tumor angiogenesis and tumor growth. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:194–203, 2015  相似文献   

4.
Angiogenesis is a process of new blood vessel formation from pre-existing ones. The most important steps in angiogenesis include detachment, proliferation, migration, homing and differentiation of vascular wall cells, which are mainly endothelial cells and their progenitors. The study focused on the effect of beta-carotene (BC) supplementation (12,000 mg/kg) in the diet on angiogenesis in Balb/c mice. Female Balb/c mice were fed for 5 weeks with two different diets: with BC or without BC supplementation. After 4 weeks of feeding, Balb/c mice were injected subcutaneously with two matrigel plugs with or without basic fibroblast growth factor (bFGF). Six days later, the animals were killed, and the matrigel plugs were used for immunohistochemical staining with CD31 antibody and for gene expression analysis. Microarray and Real-Time PCR data showed down-regulation of genes involved in proliferation and up-regulation of genes encoding inhibitors of apoptosis, proteins regulating cell adhesion, matrix-degrading enzymes and proteins involved in the VEGF pathway. The results of this study demonstrated that BC proangiogenic activity (with or without bFGF) in vivo seemed to be more significantly associated with cells’ protection from apoptosis and their stimulation of chemotaxis/homing than cell proliferation.  相似文献   

5.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) feature prominently in retinal neovascular diseases. Although the role of VEGF in retinal angiogenesis is well established, the importance of bFGF in this process requires further clarification. This study was undertaken to investigate the responses of retinal capillary cells (endothelial cells and pericytes) to bFGF under hypoxic conditions, as well as the potentially synergistic effects of bFGF and VEGF on the proliferation and cord formation of retinal endothelial cells. Cell proliferation was determined by cell number and by 3H-thymidine incorporation. Cord formation was assessed in three-dimensional gels of collagen type I. VEGF and bFGF increased 3H-thymidine incorporation by both cell types, an effect that was more pronounced in a hypoxic environment. Moreover, the proliferation of pericytes was stimulated to a greater extent by bFGF relative to VEGF. Endothelial migration in collagen gels, however, was induced more effectively by VEGF than by bFGF. A synergistic effect of VEGF and bFGF on cell invasion was observed in the collagen gel assay. VEGF and bFGF each augment proliferation of these cells, especially under hypoxia. We thus propose that these two cytokines have a synergistic effect at several stages of angiogenesis in the retina.  相似文献   

6.
Gu Q  Wang D  Wang X  Peng R  Liu J  Jiang T  Wang Z  Wang S  Deng H 《Radiation research》2004,161(6):692-702
Radiation-induced endothelial cell apoptosis is involved in the development of many radiation injuries, including radiation-induced skin ulcers. The proangiogenic growth factors basic fibroblast growth factor (bFGF, NUDT6) and VEGF enhance endothelial cell survival. In the present study, we used primary cultured human umbilical vein endothelial cells (HUVECs) irradiated with (60)Co gamma rays to explore the effects of bFGF on radiation-induced apoptosis of HUVECs and its signaling pathways. We found that bFGF inhibited radiation-induced apoptosis of HUVECs, and that the effect was mediated by the PI3K/AKT pathway. This pathway was activated by exposure of irradiated HUVECs to bFGF, involving phosphorylation of FGFR, PI3K and AKT. The survival-enhancing effect of bFGF was abrogated by wortmannin and LY294002. Transfection of a dominant-negative mutant of AKT completely blocked the anti-apoptosis effect of bFGF in irradiated HUVECs. We also found evidence for the first time that bFGF induced BAD phosphorylation in the gamma-irradiated HUVECs. These results showed that the PI3K/AKT pathway participated in the bFGF-induced modulation of the survival of irradiated HUVECs. Activation of the PI3K/AKT pathway plays an important role in bFGF-induced endothelial cell survival in the treatment of radiation-induced skin ulcers.  相似文献   

7.
In recent years, evidence has accumulated that many endogenous peptides play an important regulatory role in angiogenesis by modulating endothelial cell behavior. Adrenomedullin (AM), one such factor, was previously shown to exert a clearcut proangiogenic effect in vitro when tested on specialized human endothelial cells, such as HUVECs and immortalized endothelial cell lines. In the present study we used normal adult vascular endothelial cells isolated from human saphenous vein to analyze in vitro the role of AM, related to both early (increased cell proliferation) and late (differentiation and self-organization into capillary-like structures) angiogenic events and their relationship with the vascular endothelial growth factor (VEGF) signaling cascade. The results indicated that also in this endothelial cell phenotype AM promoted cell proliferation and differentiation into cord-like structures. These actions resulted specific and were mediated by the binding of AM to its AM1 (CRLR/RAMP2) receptor. Neither the administration of a VEGF receptor 2 (VEGFR-2) antagonist nor the downregulation of VEGF production by gene silencing were able to suppress the proangiogenic effect of AM. However, when the experiments were performed in the presence of SU5416 (a selective inhibitor of the VEGFR-2 receptor at the level of the intra-cellular tyrosine kinase domain) the proangiogenic effect of AM was abolished. This result suggests that in vascular endothelial cells the binding of AM to its AM1 receptor could trigger a transactivation of the VEGFR-2 receptor, leading to a signaling cascade inducing proangiogenic events in the cells.  相似文献   

8.
血管内皮生长因子受体信号转导通路与肿瘤血管生成   总被引:2,自引:0,他引:2  
血管内皮生长因子是促进血管生成的重要调节因子.它能促进内皮细胞增殖、迁移,阻止内皮细胞凋亡、管腔网状结构退化,增加血管渗透性.所有这些作用都是通过血管内皮生长因子受体信号转导通路实现的.它们在肿瘤血管生成、肿瘤生长中起着重要的作用.以血管内皮生长因子受体信号转导通路为靶点是开发肿瘤血管生成抑制剂的理想策略.  相似文献   

9.
Vascular endothelial growth factor (VEGF) receptor blockade impairs lung growth and decreases nitric oxide (NO) production in neonatal rat lungs. Inhaled NO (iNO) treatment after VEGF inhibition preserves lung growth in infant rats by unknown mechanisms. We hypothesized that neonatal VEGF inhibition disrupts lung growth by causing apoptosis in endothelial cells, which is attenuated by early iNO treatment. Three-day-old rats received SU-5416, an inhibitor of VEGF receptor, or its vehicle and were raised in room air with or without iNO (10 ppm). SU-5416 reduced alveolar counts and lung vessel density by 28% (P < 0.005) and 21% (P < 0.05), respectively, as early as at 7 days of age. SU-5416 increased lung active caspase-3 protein by 60% at 5 days of age (P < 0.05), which subsided by 7 days of age, suggesting a transient increase in lung apoptosis after VEGF blockade. Apoptosis primarily colocalized to lung vascular endothelial cells, and SU-5416 increased endothelial cell apoptotic index by eightfold at 5 days of age (P <0.0001). iNO treatment after SU-5416 prevented the increases in lung active caspase-3 and in endothelial cell apoptotic index. There was no difference in alveolar type 2 cell number between control and SU-5416-treated rats. We conclude that neonatal VEGF receptor inhibition causes transient apoptosis in pulmonary endothelium, which is followed by persistently impaired lung growth. Early iNO treatment after VEGF inhibition reduces endothelial cell apoptosis in neonatal lungs. We speculate that enhancing endothelial cell survival after lung injury may preserve neonatal lung growth in bronchopulmonary dysplasia.  相似文献   

10.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

11.
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.  相似文献   

12.
To examine the role of endothelial heparan sulfate during angiogenesis, we generated mice bearing an endothelial-targeted deletion in the biosynthetic enzyme N-acetylglucosamine N-deacetylase/N-sulfotransferase 1 (Ndst1). Physiological angiogenesis during cutaneous wound repair was unaffected, as was growth and reproductive capacity of the mice. In contrast, pathological angiogenesis in experimental tumors was altered, resulting in smaller tumors and reduced microvascular density and branching. To simulate the angiogenic environment of the tumor, endothelial cells were isolated and propagated in vitro with proangiogenic growth factors. Binding of FGF-2 and VEGF(164) to cells and to purified heparan sulfate was dramatically reduced. Mutant endothelial cells also exhibited altered sprouting responses to FGF-2 and VEGF(164), reduced Erk phosphorylation, and an increase in apoptosis in branching assays. Corresponding changes in growth factor binding to tumor endothelium and apoptosis were also observed in vivo. These findings demonstrate a cell-autonomous effect of heparan sulfate on endothelial cell growth in the context of tumor angiogenesis.  相似文献   

13.
Heparin has a potent angiogenic effect in experimental animals and patients with ischemic diseases; however, the precise mechanism behind this angiogenesis remains to be clarified. The aim of this study was to determine whether the administration of heparin affects the levels of heparin-binding angiogenic factors in human plasma, and to identify the molecule responsible for heparin-induced angiogenesis. Plasma levels of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were measured before and after administration of 100 U, 3,000 U or 10,000 U of heparin in patients with coronary artery disease. Administration of 3,000 U or 10,000 U of heparin caused significant increases in plasma HGF (40- and 54-fold, respectively), in absence of obvious increases in bFGF and VEGF levels. Furthermore, compared with the serum collected before heparin administration, the serum collected after heparin administration had more prominent growth-promoting and vascular tube-inducing properties on endothelial cells, and these increased activities were completely inhibited by neutralization of HGF, whereas neutralization of bFGF and VEGF had no effect. These findings suggest that HGF plays a significant role in heparin-induced angiogenesis.  相似文献   

14.
Angiogenesis is the process by which new blood vessels are formed via proliferation of vascular endothelial cells. A variety of angiogenesis inhibitors that antagonize the effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have recently been identified. However, the mechanism by which these diverse angiogenesis inhibitors exert their common effects remains largely unknown. Caveolin-1 and -2 are known to be highly expressed in vascular endothelial cells both in vitro and in vivo. Here, we examine the potential role of caveolins in the angiogenic response. For this purpose, we used the well established human umbilical vein endothelial cell line, ECV 304. Treatment of ECV 304 cells with known angiogenic growth factors (VEGF, bFGF, or hepatocyte growth factor/scatter factor), resulted in a dramatic reduction in the expression of caveolin-1. This down-regulation event was selective for caveolin-1, as caveolin-2 levels remained constant under these conditions of growth factor stimulation. VEGF-induced down-regulation of caveolin-1 expression also resulted in the morphological loss of cell surface caveolae organelles as seen by transmission electron microscopy. A variety of well characterized angiogenesis inhibitors (including angiostatin, fumagillin, 2-methoxy estradiol, transforming growth factor-beta, and thalidomide) effectively blocked VEGF-induced down-regulation of caveolin-1 as seen by immunoblotting and immunofluorescence microscopy. However, treatment with angiogenesis inhibitors alone did not significantly affect the expression of caveolin-1. PD98059, a specific inhibitor of mitogen-activated protein kinase and a known angiogenesis inhibitor, also blocked the observed VEGF-induced down-regulation of caveolin-1. Furthermore, we show that caveolin-1 can function as a negative regulator of VEGF-R (KDR) signal transduction in vivo. Thus, down-regulation of caveolin-1 may be an important step along the pathway toward endothelial cell proliferation.  相似文献   

15.
Essential factors associated with hepatic angiogenesis   总被引:3,自引:0,他引:3  
Das SK  Vasudevan DM 《Life sciences》2007,81(23-24):1555-1564
  相似文献   

16.
VEGF induces pathological angiogenesis and is an important target for the development of novel antiangiogenic molecules. In this study, we tested synthetic peptides based on the sequence of VEGF(189) for their ability to inhibit VEGF receptor binding and biological responses. We identified 12-amino acid peptides derived from exon 6 that inhibited VEGF binding to HUVECs, VEGF-stimulated ERK activation, and prostacyclin production. These peptides inhibited VEGF-induced mitogenesis, migration, and VEGF-dependent survival of endothelial cells, but caused no increase in apoptosis in the absence of VEGF. Exon 6-encoded peptides also caused a marked inhibition of VEGF-induced angiogenesis in vitro. Studies of effects of peptides on cross-linking of VEGF to its receptors and on binding of VEGF to porcine aortic endothelial cells expressing either KDR or neuropilin-1 showed that exon 6-encoded peptides effectively blocked the interaction of VEGF with both receptors. Exon 6-derived peptides caused release of bFGF from endothelial cells but inhibited bFGF-dependent ERK activation, cell proliferation and angiogenesis. Our findings indicate that VEGF exon 6-encoded peptides inhibit VEGF-induced angiogenesis, at least in part through inhibition of VEGF binding to KDR. In addition, exon 6-encoded peptides are also effective inhibitors of bFGF-mediated angiogenesis.  相似文献   

17.
18.
19.
How mechanical factors affect angiogenesis and how they and chemical angiogenic factors work in concert remain not yet well‐understood. This study investigated the interactive effects of cyclic uniaxial stretch and two potent proangiogenic molecules [basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)] on angiogenesis using a stretchable three‐dimensional (3‐D) cell culture model. Endothelial cells seeded atop a 3‐D collagen gel underwent sprouting angiogenesis while being subjected to either 10 or 20% cyclic uniaxial stretch at a frequency of either 1/12 or 1 Hz, in conjunction with an elevated concentration of bFGF or VEGF. Without the presence of additional growth factors, 10 and 20% stretch at 1 Hz induced angiogenesis and the perpendicular alignment of new sprouts, and both inductive effects were abolished by cytochalasin D (an actin polymerization inhibitor). While “10% stretch at 1 Hz,” “20% stretch at 1 Hz,” bFGF, and VEGF were strong angiogenesis stimulants individually, only the combination of “20% stretch at 1 Hz” and bFGF had an additive effect on inducing new sprouts. Interestingly, the combination of “20% stretch at a lower frequency (1/12 Hz)” and bFGF decreased sprouting angiogenesis, even though the level of perpendicular alignment of new sprouts was the same for both stretch frequencies. Taken together, these results demonstrate that both stretch frequency and magnitude, along with interactions with various growth factors, are essential in mediating formation of endothelial sprouts and vascular patterning. Furthermore, work in this area is warranted to elucidate synergistic or competitive signaling mechanisms. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:879–888, 2014  相似文献   

20.
目的:探讨炎症反应、生长因子及凋亡因子在压疮慢性创面中的表达及作用。方法:选取2013年10月至2015年7月河南大学第一附属医院收治的患者,其中临床Ⅲ、Ⅳ期压疮患者共20例,急性创面10例,正常皮肤组织6例。通过HE染色观察不同创面组织的形态学特征;免疫组织化学法检测组织中细胞凋亡因子Caspase-3的分布规律;荧光定量PCR法定量分析IL-1β、IL-6、TNF-α、VEGF、bFGF及其受体KDR、FGFR1基因水平的变化特征。结果:Ⅲ、Ⅳ期压疮创面中可见炎性细胞浸润;凋亡信号因子caspase-3在压疮组中的表达高于其他两组,差异有统计学意义;IL-1β、IL-6、TNF-α表达高于急性创面组和正常皮肤组;VEGF和bFGF生长因子及其受体KDR和bFGFR1表达分别低于对照组。结论:炎症因子和凋亡因子在压疮慢性创面中持续长时间的高表达、生长因子及其受体显著的低表达可能是压疮慢性难愈合性创面形成的机制和难以彻底治愈的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号