首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the effects of leptin treatment on prepro-orexin and orexin receptor expression in the rat hypothalamus. Adult male rats, food-deprived for 48 and 72 h, were treated one time with vehicle or leptin (10 microg, icv). Prepro-orexin mRNA content was measured by semiquantitative RT-PCR, Northern blot, and in situ hybridization; orexin receptor 1 and 2 mRNA content was quantified by Northern blot and/or semiquantitative RT-PCR. Our results indicate that leptin inhibits a fasting-induced increase in prepro-orexin mRNA and orexin receptor 1 mRNA levels in the rat hypothalamus, while orexin receptor 2 mRNA levels were unchanged in all situations evaluated. These data provide direct evidence for an additional mechanism of adaptation of the hypothalamus to food deprivation and for a new effect of leptin in the regulation of food intake.  相似文献   

2.
Sexually dimorphic expression of prepro-orexin mRNA in the rat hypothalamus   总被引:4,自引:0,他引:4  
Jöhren O  Neidert SJ  Kummer M  Dominiak P 《Peptides》2002,23(6):1177-1180
The neuropeptides orexin A and B are expressed in the lateral hypothalamic area and are involved in the regulation of energy homeostasis and arousal. Recent results showed gender differences in the expression of orexin receptor subtypes in rats. In the present study, we analyzed the mRNA expression of prepro-orexin (PPO) in the hypothalamus of male and female rats using quantitative real-time PCR. We found significantly higher levels of PPO mRNA in the hypothalamus of female rats compared to male rats. Our study indicates a sex-dependent regulation of hypothalamic PPO expression and suggests gender-specific functions of orexins.  相似文献   

3.
Progesterone receptors in nuclei and cytosols from the hypothalamus and anterior hypophysis of oestrogen-primed immature and mature female rats were investigated. In the hypothalamic and hypophysial nuclei the binding and exchange of [3H]-R5020 with progesterone or R5020 was achieved after 2 h at 0–10°C, but rapidly degraded at 30°C. In addition, when unlabelled R5020 was added to the incubation tubes previously incubated with [3H]-R5020 at 0–10°C, unlabelled R5020 was found to exchange with [3H]-R5020 bound to nuclei, confirming that [3H]-R5020 binding is due to an exchange reaction. Scatchard analysis of the specific binding curves revealed high-affinity and low capacity binding. Progesterone receptor complexes extracted with 0.4 M KCl from purified and crude (800 g pellet) nuclei prepared from the hypothalamus and anterior hypophysis of the oestrogen-primed adult female rats incubated with [3H]-R5020 were identified in the vicinity of 5S by gradient centrifugation. From these results it is concluded that nuclear progesterone receptors exist in the hypothalamus and anterior hypophysis. Moreover, it is interesting to note that progestin binding sites resistant to extraction with 0.4 M KCl exist even in the purified hypothalamic and hypophysial nuclei.In the hypothalamic and anterior hypophysial cytosols an exchange reaction was observed at 0–10°C as in the nuclei. The 7S cytosol receptors at low ionic strength sedimented in the 4S region in a high salt medium (0.4 M KCl), both in the hypothalamus or hypophysis, suggesting a possible relationship between aggregate- and subunit receptors. Moreover, progesterone receptors in the hypothalamic and hypophysial cytosols were separated on polyacrylamide agarose gels electrophoretically from oestrogen- and androgen-receptors labelled with [3H]-R2858 and [3H]-R1881, respectively.The existence of nuclear progesterone receptors in the hypothalamus and anterior hypophysis, together with the cytosol receptors, provide further evidence for a possible role of the steroid-receptor interaction in the mechanism of the central action of progesterone.  相似文献   

4.
We examined the expressions of the prepro-orexin gene in the lateral hypothalamic area (LHA), the genes of the neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the arcuate nucleus (ARC), the orexin type 1 receptor (OX1R) gene in the ventromedial hypothalamic nucleus (VMH) and the orexin type 2 receptor (OX2R) gene in the paraventricular nucleus (PVN) in 6-, 12- and 18-week-old male lean (Fa/?) and obese (fa/fa) Zucker rats, using in situ hybridization histochemistry. The fa/fa rats showed hyperglycemia at 12- and 18-week-old. The prepro-orexin mRNA level in fa/fa rats at 18-week-old and the OX2R mRNA level in fa/fa rats at 12- and 18-week-old were significantly decreased compared to controls. The NPY mRNA levels in fa/fa rats at each time point were significantly increased compared to controls, but the POMC mRNA levels were decreased. Prepro-orexin and OX2R mRNA levels in fa/fa rats pretreated with insulin normalized to the levels found in Fa/? rats. These results suggest that the regulation of prepro-orexin gene expression might be independent of the regulation of the NPY and POMC genes in the ARC in fa/fa rats.  相似文献   

5.
Chicken prepro-orexin cDNA has been cloned, sequenced and characterized. The predicted amino acid sequence of chicken prepro-orexin cDNA revealed that orexin-A and -B are highly conserved among vertebrate species. In situ hybridization and immunohistochemistry localized orexin-positive cell bodies in the periventricular hypothalamic nucleus extending into the lateral hypothalamic area. Comparisons of orexin gene expression in the brains of 24-h-fasted and ad libitum-fed chickens were made using semi-quantitative RT-PCR. No significant differences in orexin mRNA expression were observed.  相似文献   

6.
7.
Although starvation-induced biochemical and metabolic changes are perceived by the hypothalamus, the adrenal gland plays a key role in the integration of metabolic activity and energy balance, implicating feeding as a major synchronizer of rhythms in the hypothalamic-pituitary-adrenal (HPA) axis. Given that orexins are involved in regulating food intake and activating the HPA axis, we hypothesized that food deprivation, an acute challenge to the systems that regulate energy balance, should elicit changes in orexin receptor signaling at the hypothalamic and adrenal levels. Food deprivation induced orexin type 1 (OX1R) and 2 (OX2R) receptors at mRNA and protein levels in the hypothalamus, in addition to a fivefold increase in prepro-orexin mRNA. Cleaved peptides OR-A and OR-B are also elevated at the protein level. Interestingly, adrenal OX1R and OX2R levels were significantly reduced in food-deprived animals, whereas there was no expression of prepro-orexin in the adrenal gland in either state. Food deprivation exerted a differential effect on OXR-G protein coupling. In the hypothalamus of food deprived rats compared with controls, a significant increase in coupling of orexin receptors to Gq, Gs, and Go was demonstrated, whereas coupling to Gi was relatively less. However, in the adrenal cortex of the food-deprived animal, there was decreased coupling of orexin receptors to Gs, Go, and Gq and increased coupling to Gi. Subsequent second-messenger studies (cAMP/IP3) have supported these findings. Our data indicate that food deprivation has differential effects on orexin receptor expression and their signaling characteristics at the hypothalamic and adrenocortical levels. These findings suggest orexins as potential metabolic regulators within the HPA axis both centrally and peripherally.  相似文献   

8.
9.
Orexins/hypocretins are recently discovered neuropeptides, synthesized mainly in the lateral hypothalamus of the brain. Orexins regulate various functions including sleep and apetite. We recently reported increased amount of orexin A in the phenylketonuria (PKU) mouse brain. Whether this is caused by overexpression of the precursor for orexins, prepro-orexin was studied in the PKU mouse brain. Microarray expression analysis revealed overexpression of orexin gene in the brain of PKU mouse. Quantitative real-time RT-PCR showed increased level of prepro-orexin mRNA in the PKU mouse brain. In addition, expression of genes associated with cell signal and growth regulation was also affected in the PKU mouse brain, as observed by microarray analysis. These data suggest that up-regulation of orexin mRNA expression is the possible factor for inducing high orexin A in the brain of PKU mouse. The metabolic environment in the brain of PKU mouse affects normal expression of other genes possibly to result in pathophysiology seen in the PKU mouse, if documented also in patients with PKU.  相似文献   

10.
In experimental dipsomania model (formation of physical dependence by method of intensive alcoholization) we have studied receptor binding of testosterone (T) and estradiol (E2) in the hypothalamus and pituitary body of mature male rats. Administration (at 10 and 16 h) of 25% ethanol-saline solution at a dose of 7.5 g/kg of body weight in the course of 5 days significantly decreased serum T level but did not change serum LH and FSH levels. Essential reduction of the nuclear androgen receptors in the preoptic-anterior hypothalamic area (POA), mediobasal hypothalamus (MBH) and adenohypophysis was noted in alcohol-treated rats. Unlike androgen receptors the number of the nuclear E2-binding sites in PaO was significantly increased in these males. Thus the results of the present paper demonstrate that multiple administration of ethanol stipulates deficit of serum T, androgen receptors in MBH and pituitary body that possibly results in separation of negative feedback mechanism between the gonads and pituitary body. Increase of specific binding of E2 to nuclear receptors in PoA might appear to explain feminization of alcohol-treated rats.  相似文献   

11.
Presence of appetite-regulating peptides orexin-A and orexin-B in mucosal endocrine cells suggests a role in physiological control of the intestine. Our aim was to characterize orexin-induced stimulation of duodenal bicarbonate secretion and modulation of secretory responses and mucosal orexin receptors by overnight food deprivation. Lewis x Dark Agouti rats were anesthetized and proximal duodenum cannulated in situ. Mucosal bicarbonate secretion (pH stat) and mean arterial blood pressure were continuously recorded. Orexin-A was administered intra-arterially close to the duodenum, intraluminally, or into the brain ventricles. Total RNA was extracted from mucosal specimens, reverse transcribed to cDNA and expression of orexin receptors 1 and 2 (OX1 and OX2) measured by quantitative real-time PCR. OX1 protein was measured by Western blot. Intra-arterial orexin-A (60-600 nmol.h(-1).kg(-1)) increased (P < 0.01) the duodenal secretion in fed but not in fasted animals. The OX1 receptor antagonist SB-334867, which was also found to have a partial agonist action, abolished the orexin-induced secretory response but did not affect secretion induced by the muscarinic agonist bethanechol. Atropine, in contrast, inhibited bethanechol but not orexin-induced secretion. Orexin-A infused into the brain ventricles (2-20 nmol.kg(-1).h(-1)) or added to luminal perfusate (1.0-100 nM) did not affect secretion, indicating that orexin-A acts peripherally and at basolateral receptors. Overnight fasting decreased mucosal OX1 and OX2 mRNA expression (P < 0.01) as well as OX1 protein expression (P < 0.05). We conclude that stimulation of secretion by orexin-A may involve both receptor types and is independent of cholinergic pathways. Intestinal OX receptors and secretory responses are markedly related to food intake.  相似文献   

12.
Orexins are peptides controlling feeding, sleep, and neuroendocrine functions. They are synthesized by the hypothalamus with projections throughout the brain. Orexins and their orexin 1 (OX(1)) and orexin 2 receptors (OX(2)) are present outside the central nervous system. Here the expression of preproorexin (PPO), OX(1), and OX(2) was studied in rat ovaries. PPO, OX(1), and OX(2) were determined by quantitative real-time RT-PCR in ovaries of cycling Sprague-Dawley rats on all days of the cycle. Serum hormones and food consumption were determined. Ovarian OX(1) and OX(2) expression was then studied after ovulation blockade with Cetrorelix or Nembutal. Finally, proestrous rats were treated at 1400 and 1900 with a selective OX(1) antagonist (SB-334867-A) and/or a selective OX(2) antagonist (JNJ-10397049), and hormone levels, ovulation, and ovarian histology were studied. Both receptors' expression increased in the ovary between 1700 and 2300 of proestrus exclusively, in coincidence with hormone peaks, but not with the dark-light cycle or food intake. PPO was not detected. Cetrorelix or Nembutal prevented the increases of OX(1) and OX(2) while blunting gonadotropin peaks. SB-334867-A and JNJ-10397049, alone or combined, decreased serum gonadotropins and reduced ova number the following morning; ovaries showed a bloody (hyperemic and/or hemorrhagic) reaction with more preovulatory follicles and less corpora lutea. Here we demonstrate for the first time an increased ovarian expression of both OX(1) and OX(2), only during proestrous afternoon, and its hormone dependence but not dependence on the dark-light cycle. Two new receptor antagonists reduced proestrous gonadotropins and/or ova number while producing ovarian structural changes.  相似文献   

13.
Development of estrogen receptors in the rat hypothalamus   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Hypothalamic peptides orexin A (OXA) and orexin B (OXB) are derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin (PPO). They act via two orexin receptors (OX1R and OX2R), which belong to the G-protein coupled receptor superfamily. Orexins are implicated in the regulation of arousal states, energy homeostasis and reproductive neuroendocrine function. The objective of this study was to investigate the presence and changes in orexin expression in the porcine pituitary during the estrous cycle. Adenohypophysis (AP) and neurohypophysis (NP) tissue samples were harvested on days 2 to 3, 10 to 12, 14 to 16, and 17 to 19 of the estrous cycle. The expression of the PPO gene increased in AP and NP during the estrous cycle. The highest PPO protein concentrations in AP were reported on days 2 to 3 (P<0.05), and in NP – on days 10 to 12 and 17 to 19 (P<0.05). The expression of PPO mRNA was lower in AP than in NP, but PPO protein levels were higher in AP. In AP, OXA immunoreactivity was higher (P<0.05) on days 10 to 12 and 14 to 16. In NP, the highest (P<0.05) content of the analyzed protein was observed on days 10 to 12 and the lowest (P<0.05) – on days 14 to 16 and 17 to 19. OXB immunoreactivity in AP reached the highest level (P<0.05) on days 2 to 3, and the lowest level (P<0.05) was determined on days 10 to 12 and 17 to 19. OXB protein concentrations in NP peaked (P<0.05) on days 10 to 12 of the cycle. Our study was the first experiment to demonstrate the expression of the orexin gene and orexin proteins in the porcine pituitary and the correlations between expression levels and the phase of the estrous cycle.  相似文献   

16.
Angiotensin IV, (V-Y-I-H-P-F), binds to AT4 receptors in blood vessels to induce vasodilatation and proliferation of cultured bovine endothelial cells. This latter effect may be important not only in developing tissues but also in injured vessels undergoing remodelling. In the present study, using normal rabbit carotid arteries, we detected AT4 receptors in vascular smooth muscle cells and in the vasa vasorum of the adventitia. Very low receptor levels were observed in the endothelial cells. In keeping with the described binding specificity of AT4 receptors, unlabelled angiotensin IV competed for [125I]angiotensin IV binding in the arteries, with an IC50 of 1.4 nM, whereas angiotensin II and angiotensin III were weaker competitors. Within the first week following endothelial denudation of the carotid artery by balloon catheter, AT4 receptor binding in the media increased to approximately 150% of control tissue. AT4 receptor binding further increased in the media, large neointima and re-endothelialized cell layer to 223% at 20 weeks after injury. In view of the known trophic effects of angiotensin IV, the elevated expression of AT4 receptors, in both the neointima and media of arteries, following balloon injury to the endothelium, suggests a role for the peptide in the adaptive response and remodelling of the vascular wall following damage.  相似文献   

17.
(-)-[3H]-Dihydroalprenolol((-)[3H]DHA) binding in the rat hypothalamus appears to possess all the characteristics expected of physiologically relevant beta-adrenergic receptors. Binding of (-)-[3H]DHA to the hypothalamic sites was rapid (k1 = 1.3 X 10(-7) min-1) and also rapidly reversible. Binding was saturable at low concentrations of ligand (approximately 50-100 nM). The dissociation constant (KD) of (-)-[3H]DHA binding determined by equilibrium analysis was 19 nM. Binding displayed beta-adrenergic specificity. beta-Adrenergic agonists inhibited binding in the following order of potency: (-)-isoproterenol congruent to (-)-epinephrine greater than (-)-norepinephrine. Specific beta-adrenergic antagonists (-)-propranol and (-)-alprenolol inhibited binding at low concentrations (KD = 25-50nM) whereas the alpha-antagonist phentolamine inhibited binding at very high concentration (KD = 42 micron). Interactions of both agonists and antagonists with the sites showed stereoselectivity. The (-)-isomers of all beta-adrenergic agents tested were more potent than their respective (+)-isomers. These results suggest that specific receptor sites for beta-adrenergic catecholamines are present in rat hypothalamus.  相似文献   

18.
Corticotropin-releasing factor receptors and actions in rat Leydig cells   总被引:5,自引:0,他引:5  
Rat Leydig cells possess functional high affinity receptors for corticotropin-releasing factor (CRF). CRF inhibited human chorionic gonadotropin (hCG)-induced androgen production in cultured fetal and adult Leydig cells in a dose-dependent manner, but it had no effect on basal testosterone secretion. Comparable inhibitory effects of CRF were observed in the presence or absence of 3-isobutyl-1-methylxanthine. CRF treatment caused a marked reduction of steroid precursors of the androgen pathway (from pregnenolone to testosterone) during gonadotropin stimulation, but it did not influence their basal levels. The inhibitory action of CRF on hCG-induced steroidogenesis was fully reversed by 8-bromo-cAMP but was not affected by pertussis toxin. The action of CRF was rapid; and it was blocked by coincubation with anti-CRF antibody. CRF caused no changes in hCG binding to Leydig cells, and in contrast to other target tissues, CRF did not stimulate cAMP production, indicating that CRF receptors are not coupled to Gs in Leydig cells. These studies have demonstrated that CRF-induced inhibition of the acute steroidogenic action of hCG is exerted at sites related to receptor/cyclase coupling or cAMP formation. The inhibitory effects of CRF in the Leydig cell do not occur through the Gi unit of adenylate cyclase, but could involve pertussis toxin-insensitive G protein(s). These observations demonstrate that CRF has a novel and potent antireproductive effect at the testicular level. Since CRF is synthesized in the testis and is present in Leydig cells, it is likely that locally produced CRF could exert negative autocrine modulation on the stimulatory action of luteinizing hormone on Leydig cell function.  相似文献   

19.
20.
Summary Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号