首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The critical micelle concentrations of aqueous solutions of Nα-acyl-L-histidine have been determined by the spectral shift method with Rhodamine 6G and by the light scattering method. With the spectral shift method critical micelle concentrations of 40, 9.0, 1.0, 0.11, and 0.012 mM were obtained for Nα-acyl-L-histidine containing saturated acids of 8, 10, 12, 14, and 16 carbons respectively, at 45°C and pH 8.6 in the absence of added salt. For the homologs containing 10, 12, and 14 carbon acids, critical micelle concentration of 9.0, 1.0, and 0.11 mM were determined by the light scattering method.The light scattering studies yield micelle weights of 60, 66, and 84 thousand for the C-10, C-12, and C-14 homologs, respectively.Nα-acyl-L-histidine is an unusual surfactant in that the hydrophilic portion of the molecule is relatively large and contains both an ionic group (carboxylate group) and a nonionic group (imidazole side-chain). The bulky hydrophilic group of Nα-acyl-L-histidine causes this molecule to exhibit physico-chemical behavior which is not typical of that exhibited by most ionic surfactants. In particular, the dependence of the critical micelle concentration on the acyl chain length and on the concentration of added salt is atypical.Chemical shift measurements (by NMR) on the C-2 and C-5 protons of imidazole in micellar Nα-dodecanoyl-L-histidine indicate that the imidazole group is, indeed, positioned at the water-micelle interface.  相似文献   

2.
The intermicellar bile salt concentration in equilibrium with the bile salt-lecithin-cholesterol mixed-micelle has been studied in human bile. Equilibrium-dialysis, used to measure the biliary intermicellar bile salt concentration, has been validated as an applicable method by studying the cholate-lecithin mixed-micelle, for which intermicellar bile salt concentration values have previously been reported. The intermicellar bile salt concentration of bile was essentially independent of ionic strength in the range 0.05-0.15 M chloride. Simple dilution of bile lowered the intermicellar bile salt concentration (about 2/3 reduction for each two-fold dilution). This reduction occurred because of a simultaneous decrease in the molar ration of bile salt/phospholipid in the micelle. Dilution of micelles with micellar bile salt/phospholipid held constant did not affect the intermicellar bile salt concentration. The relationship between intermicellar bile salt concentration and micellar bile salt/phospholipid, defined in the dilution studies, was linear in the range of study. For a composite of five biles, this relationship was described by the equation: intermicellar bile salt concentration = 1.27 (bile salt/phsopholipid) + 0.538. Data obtained on an artificial bile agreed closely with the results obtained on bile suggesting that the other constituents of bile did not affect this analysis. These findings may be helpful in understanding the process of micellar cholesterol solubilization in bile.  相似文献   

3.
采用激光散射等方法测定了在添加不同的两价无机盐情况下,C8-卵磷脂微团溶液的液-液相分离曲线,及其相变临界温度随盐类型和盐离子强度的变化。并从理论上分析了两价盐对C8-卵磷脂微团溶液吉布斯自由能的影响,推导出-关于盐对该微团溶液相交临界温度影响的半经验半理论公式,可满意地描述该微团溶液的液-液相分离受益调控的规律。  相似文献   

4.
两价盐对C_8-卵磷脂微团溶液液-液相分离的影响   总被引:2,自引:1,他引:1  
采用激光散射等方法测定了在添加不同的两价无机盐情况下,C8-卵磷脂微团溶液的液-液相分离曲线,及上变临界温度随盐类型和盐离子强度的变化,并从理论上分析两价盐对C8-卵磷脂微团溶液吉布斯自由能的影响,推导出-关于盐对该微团溶液相变临界温度影响的半经验半理论公式,可满意地描述该微团溶液的液-液相分离受盐调控的规律。  相似文献   

5.
Protein extractions using aerosol OT (AOT)-isooctane reverse micelle solutions have been studied to explore the potential for separating and enriching proteins with the reversed micellar extraction. The effects of pH, ionic strength, and different cations of chlorides in a bulk aqueous phase and of AOT concentration in an organic phase on the partitioning of lysozyme and myoglobin and the solubilization of water are presented in detail. The extraction of lysozyme was affected by the concentration of potassium or barium but was almost independent of that of sodium or calcium, whose ionic diameter is smaller than that of potassium and barium. For the extraction of myoglobin, however, the effect of barium concentration was not appreciable. Lysozyme could be enriched into the reversed micellar phase up to 30 times the aqueous feed concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
The equilibrium of bile salt between aqueous phase and mixed micelle was studied in solutions of pure bile salt and lecithin comparing taurocholate and taurochenodeoxycholate. The relationship between bile salt concentration in the aqueous phase and the ratio of bile salt/lecithin in the mixed micelle was determined by equilibrium dialysis on serial dilutions of these solutions. Extrapolation of this relationship to zero mixed-micellar bile salt permitted calculation of the critical micelle concentration (CMC) of the mixed micelle. For taurocholate, taurochenodeoxycholate, and an equimolar mix of these two bile salts, the mixed micelle CMC's were 3.1 mM, 0.47 mM, and 0.89 mM respectively. In the most concentrated solutions, aqueous phase bile salt concentration surpassed the CMC of the simple bile salt micelle by more than four-fold indicating the presence of simple micelles as well as mixed micelles. At all dilutions taurochenodeoxycholate had a much greater affinity for the mixed micelle than did taurocholate. This last finding may be the reason for the superior cholesterol solubilizing capacity of taurochenodeoxycholate-lecithin solutions compared to taurocholate-lecithin solutions.  相似文献   

7.
The objectives of this study were to determine the concentrations of free benzalkonium chloride (BAC) and apparent partitions coefficients (K m) in micelle solutions and to explore its application in formulation development. Ultrafiltration (UF) was carried out using 10K Nanosep® devices and centrifugation at 5,000 rpm for 5 min. The separation of free BAC from micellar solutions was also conducted using ultracentrifugation (UC) method for the comparison with UF method. Capillary electrophoresis method was used for the identification of micelles. Results showed that a UF method was applicable for quantitatively evaluating BAC–micelle interaction in micellar solutions. Unlike UF, UC could not completely separate free BAC from the micelles. The free BAC concentrations in the micelle solutions decreased with increasing surfactant concentrations. Among polysorbate 80, cremophor EL, and tyloxapol, BAC had the highest K m in polysorbate 80 solutions. The K m was significantly lower in non-buffered aqueous solutions than that in citric buffers. Moreover, increasing surfactant concentrations led to reducing antimicrobial activity. The UF is a rapid and accurate method that minimally alters the micellar equilibrium for the determination of free BAC and K m in micellar solutions. In conclusion, free BAC concentration, which is a function of surfactant type, surfactant concentration, and ion strength of solution, is likely associated with the antimicrobial activity.  相似文献   

8.
Li JL  Bai R 《Biodegradation》2005,16(1):57-65
Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.  相似文献   

9.
10.
Unnatural bile salts have been synthesized with a cationic group at the side chain of natural bile acids. These cationic bile salts aggregate in water and aqueous salt solutions in a manner similar to their natural counterparts. The critical micellar concentrations of the cationic bile salts were measured using a fluorescence method. Cationic bile salts aggregated at a concentration lower than natural deoxycholic acid. Since dihydroxy bile salt micelles are well known for cholesterol dissolution/removal, the dissolution in the cationic micelles has been evaluated. The cationic analogs dissolve approximately 70 mg/dL of cholesterol, which is comparable to taurochenodeoxycholate micelle under identical bile salt concentrations. Cholesterol dissolution in cationic bile salt micelle enhanced upon adding various amounts of PC. Cholesterol crystallization was studied in model bile at various cationic bile salt concentrations. The addition of 5, 15 and 30 mM of the cationic bile salts attenuated the crystallization process, without influencing the crystal observation time or decreasing the final amount of crystals formed. All these effects were comparable to those observed with cholic acid. These findings suggest that cationic bile salts have physico-chemical properties analogous to those of natural anionic bile salts, and thus may have therapeutic potential.  相似文献   

11.
C H Spink  V Lieto  E Mereand  C Pruden 《Biochemistry》1991,30(20):5104-5112
A systematic study of the micelle-vesicle transformation in phospholipid-bile salt mixtures using differential scanning calorimetry (DSC) indicates that the lipid undergoes a variety of changes in its thermal properties as mixed micellar solutions are diluted to concentrations at which vesicles form. In the experiments, micellar solutions of 50 mg/mL total lipid, containing sodium taurocholate (TC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), are diluted to concentrations corresponding to differing extents of aggregation of the TC with phospholipid. Turbidity and equilibrium dialysis measurements are used to establish boundaries between where micelles persist and where vesicles are formed and to determine the extent of aggregation of the TC with DPPC. At molar ratios Re of bound TC to DPPC greater than 0.3, micellar solutions are formed, while at Re less than 0.15 vesicles are evident upon dilution. As the transformation from micelles to vesicles occurs, the thermal transitions in the lipid change from broad, low Cp (max) peaks in the micelle region to multiple peaks of high cooperativity in regions of composition where lamellar structures and vesicles form. The DSC curves show that in the composition region corresponding to where bilayer micelles exist a new thermal phase forms, which has a melting transition near 32 degrees C, if the solutions are allowed to equilibrate for 48 h at 21 degrees C. Furthermore, at compositions between Re = 0 and 0.25, there is metastability in the lipid when equilibrated at 21 degrees C, but heating the lipid through the thermal transitions leads to reversible behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Structural transitions involving shape changes play an important role in cellular physiology. Such transition can be conveniently induced in charged micelles by increasing ionic strength of the medium. Shape changes have recently been shown to result in altered packing and lowering of micellar polarity. As a consequence of reduced polarity, the ionization states of micelle-bound molecules vary in micelles of different shape. The changes in micellar organization and dynamics due to structural transition can be effectively monitored utilizing the red edge excitation shift (REES). These changes are influenced by the position (location) of the probe in the micelle, i.e., the region of the micelle being monitored. Changes in organization and dynamics of probes and peptides upon structural transition are discussed with representative examples. We envisage that the reduction in micellar polarity and tighter packing upon structural transition represent important factors in the incorporation of drugs in micelles (nano-carriers), since micellar polarity plays a crucial role in the incorporation of drugs.  相似文献   

13.
Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media.  相似文献   

14.
The development of a simple, reliable method for determination of detergent micelle aggregation number that relies solely on measurement of steady-state fluorescence quenching is presented. The degree of steady-state fluorescence quenching of a micelle-solubilized fluorophore (pyrene) by a quencher that partitions greatly into the micelles (coumarin 153) is dependent on the micelle concentration, which can therefore be determined. The aggregation number is calculated as the micelle concentration/detergent monomer concentration (the total detergent concentration above the critical micelle concentration). For the determination to be accurate, the partition coefficient of the quencher into the micelle phase is determined and used to calculate the micellar concentration of quencher. Also, the quenching of pyrene by a coumarin 153 molecule within the same micelle must be complete, and this was confirmed by time-resolved fluorescence measurements. Aggregation numbers were determined for one cationic and several nonionic detergents and were found to be consistent with literature values. The approach presented is an improvement on a previous luminescence quenching technique (Turro, N.J., and A. Yekta. 1978. J. Am. Chem. Soc. 100:5951-5952) and can be used on cationic, anionic, and nonionic detergents with micelles ranging greatly in size and under varying conditions, such as detergent concentration, ionic strength, or temperature.  相似文献   

15.
Despite the fact that a considerable amount of albumin is present in bile, little is known about the effect of albumin on micellar solubility of cholesterol. The effect of albumin on solubility of cholesterol in various micellar bile salt solutions was studied using Millipore filtration after equilibration. In addition, partitioning of cholesterol from micellar solution was studied using a polyethylene disc method. Decrease of the solubility of cholesterol by the presence of albumin was observed only in unconjugated bile salt solution. The lowering effect of albumin on the cholesterol solubility was found to be proportional to the hydrophobicity of bile salt. In contrast, albumin had almost no effect on cholesterol solubility, either in conjugated bile salt solution or in micellar bile salt solution containing phosphatidylcholine. Addition of albumin enhanced the partitioning of cholesterol out of the micelles in sodium chenodeoxycholate solution as a result of decreased micellar solubility and increased the aqueous solubility of cholesterol in the presence of albumin. Therefore, conjugated bile salt and phosphatidylcholine exert a buffering action on the albumin-induced adverse effect on cholesterol solubility, thus stabilising bile against inadvertent precipitation of cholesterol.  相似文献   

16.
Multiscale Characterization of Casein Micelles Under NaCl Range Conditions   总被引:2,自引:0,他引:2  
Micellar casein (MC) dispersions were studied at a constant protein concentration of 5 wt % in high NaCl environment. The micellar edifices were characterized as to their morphology, size, and content of proteins in the supernatant after ultracentrifugation. Additionally, changes in secondary structures of the protein upon salt increase were followed by Fourier Transform Infrared Spectroscopy (FTIR). For the first time, the estimations of secondary structural elements (irregular, ß-sheet, ??-helix and turn) from Amide III assignments were correlated with results from Amide I. Casein micelles dispersions in water were characterized by Transmission Electron Microscopy (TEM) by a spherical shape and a size between 100 and 200 nm. A salt increase resulted to a destabilization of the micelle and the formation of mini-micelles more or less aggregated. The size of the new edifice was almost similar to the native micelle. These TEM observations were confirmed by a constant casein micelle hydrodynamic diameter determined by Dynamic Light Scattering (DLS) and ranging between 150 and 180 nm. Upon salt increase, FTIR revealed an increase in irregular structures and a concurrent decrease in ß-sheet structures. Secondary structural elements percentages were almost similar from Amide I and Amide III. The use of these multiscale techniques led to a better understanding of the micellar edifice under high salt environment. Around 3% NaCl addition, a good correlation was observed between destabilization of the micellar edifice, modifications of the caseins secondary structure and repartition of caseins between supernatant and pellet after ultracentrifugation.  相似文献   

17.
A theory is described for Rayleigh light-scattering from solutions of detergent-complexed macromolecules applicable to measurements carried out under conditions of Donnan equilibrium. The theory shows that when scattering measurements are made on detergent-solubilized macromolecules in the presence of detergent micelles the apparent Mr is dependent on the extent of detergent binding and effective charge on the detergent-macromolecule complex and the micellar charge and aggregation number. Equations are given for the apparent Mr of the macromolecule under limiting conditions of high salt and low salt concentration. Low-angle laser-light-scattering measurements were made on lysozyme complexed with sodium n-dodecyl sulphate both in the absence and in the presence of detergent micelles. These experimentally obtained data were used in conjunction with the detergent-binding isotherm to test the theory at high ionic strength. Light-scattering measurements were also made on detergent-saturated complexes as a function of ionic strength and pH. The results are in reasonable accord with both the qualitative and the quantitative predictions of the theory.  相似文献   

18.
In this study, photophysics and photodynamical properties of Pyronin Y (PyY) in different liquid media were investigated. Interactions of PyY, which is a positively charged pigment compound pertaining to the xanthene derivatives with surfactants possessing distinct charges, were determined by using the molecular absorption and fluorescence spectroscopy techniques. It was observed that band intensities of absorption and fluorescence spectra belonging to PyY increase in proportion to the water when compared to three micelle systems, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X‐100 (TX‐100). This suggests that interactions in micelle systems are different from those in deionized water, and solvation and surface interactions modify. It is determined that the strongest interaction occurs between PyY dye and SDS, anionic surfactant, and this interaction arises from the electrostatic forces. Calculated photophysical parameters indicated that the microenvironment of PyY in SDS micelle is different to that of other systems. In temperature studies, it was reported that increasing the temperature of the samples increased non‐radiative transitions. Steady‐state fluorescence anisotropy values were calculated by using fluorescence intensities of PyY compound in pre‐micellar, micellar and post‐micellar systems. Once the PyY fluorescence probe is added to the surfactant containing solutions below the critical micelle concentrations, the measured anisotropy values were found to be low because the probe remains in the deionized water phase. When the surfactant concentration of the medium becomes closer to the critical micelle concentrations, the steady‐state anisotropy value prominently increases. This is because of the restrictions on the rotational diffusion of the probe in micellar solution. It is observed that positively charged PyY shows a higher affinity to the negatively charged SDS compared with the positively charged CTAB and neutral TX‐100 surfactants. This can be explained by Coulombic interactions.  相似文献   

19.
Dynamic light scattering (DLS) measurements were performed to study the binding of anionic surfactant alpha olefin sulfonate (AOS) to gelatin chains at various NaCl concentrations at 30 degrees C in aqueous sodium phosphate buffer (pH = 6.8) solutions. The surfactant concentration was varied from 0 to 80 mM and the NaCl concentrations chosen were 0.025, 0.05, and 0.1 M. AOS exhibited electrostatic binding to the positively charged sites of the polypeptide chain resulting in considerable reduction in its hydrodynamic radius up to critical micellar concentration (cmc = 8 mM for no salt, 0.01 and 0.025 M, and 5 mM for 0.05 M and 2 mM for 0.1 M solutions). The correlation function revealed the presence of two types of structures above cmc; namely the micelles of AOS and gelatin-AOS micelle complexes. The micellar radii (Rm), the effective gelatin-surfactant complex radii (Rc), have been determined as a function of salt concentration. No critical aggregation concentration (cac) was observed. The inter-gelatin-surfactant complex (kD1) and inter-micellar interactions (kD2), were determined by fitting the concentration dependence of Rm and Rc to a virial expansion in reduced concentration (c - cmc), which are compared. While kD1 showed strong ionic strength dependence, kD2 remained invariant of the same. The protein to surfactant binding ratio was found to be smaller than normal. Results have been discussed within the framework of the necklace-bead model of polymer-surfactant interactions.  相似文献   

20.
B R Ganong 《Biochemistry》1990,29(29):6904-6910
Phosphatidylinositol (PI) kinase activity was solubilized from rat liver microsomes and partially purified by chromatography on hydroxyapatite and Reactive Green 19-Superose. Examination of the ATP dependence using a mixed micellar assay gave a Km of 120 microM. The dependence of reaction rate on PI was more complicated. PI kinase bound a large amount of Triton X-100, and as expected for a micelle-associated enzyme utilizing a micelle-associated lipid substrate, the reaction rate was dependent on the micellar mole fraction, PI/(PI + Triton X-100), with a Km of 0.02 (unitless). Activity showed an additional dependence on bulk PI concentration at high micelle dilution. These results demonstrated two kinetically distinguishable steps leading to formation of a productive PI/enzyme(/ATP) complex. The rate of the first step, which probably represents exchange of PI from the bulk micellar pool into enzyme-containing micelles, depends on bulk PI concentration. The rate of the second step, association of PI with enzyme within a single micelle, depends on the micellar mole fraction of PI. Depression of the apparent Vmax at low ionic strength suggested that electrostatic repulsion between negatively charged PI/Triton X-100 mixed micelles inhibits PI exchange, consistent with a model in which intermicellar PI exchange depends on micellar collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号