首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effect of different adenine-containing compounds on the NADP-/NAD-glutamate dehydrogenase (GDH) ratio was studied as a function of yeast-mycelium transition in Benjaminiella poitrasii. Under in vivo conditions, at a 5.0 mM concentration, cyclic AMP (cAMP) and dibutyryl cAMP maintained the cells in the yeast form for up to 7 and 5 h, respectively, and this was reflected in the patterns of GDH ratios observed. In vitro studies of phosphorylation and dephosphorylation have also been carried out, and the results suggest a possible correlation between cAMP, the GDH ratio, and cell form in B. poitrasii.  相似文献   

2.
Benjaminiella poitrasii, a dimorphic zygomycetous fungus possesses three glutamate dehydrogenases, one requiring NAD while the other two use NADP as a coenzyme. In the activity staining after electrophoresis on native polyacrylamide gel NAD- dependent glutamate dehydrogenase revealed the presence of one enzyme that was expressed in both, yeast- and mycelium-form cells. While in case of NADP- dependent glutamate dehydrogenase two distinct activity bands that were differentially expressed in yeast- and mycelium-form cells were seen. Interestingly, during yeast-mycelium transition and reverse, quantitative changes in form-specific native NADP-dependent glutamate dehydrogenase activities were seen. The biochemical data on temperature and pH optima, thermostability, and kinetic properties confirmed the presence of two NADP-dependent proteins in B. poitrasii, parent strain. The monomorphic mutant (Y-5, yeast form) showed NADP- glutamate dehydrogenase similar to parent yeast-form enzyme. For the first time the significance of differential expression of these enzymes during morphological transition in B. poitrasii has been suggested.  相似文献   

3.
The chitinase and N-acetylglucosaminidase activities in cell-wall-bound and free fractions in the dimorphic fungus Benjaminiella poitrasii were studied as a function of morphological (unicellular yeast-mycelium) transition. The specific activities of chitinases of cell-wall-free, particularly in the membrane fraction, were significantly different in the yeast and mycelial forms. During the yeast-mycelium transition, the N-acetylglucosaminidase activity isolated in a membrane preparation increased steadily. The activity of the yeast cells (0.83 +/- 0.17 nkat/mg protein) increased 17-fold to 14.2 +/- 1.7 nkat/mg protein in 1-d-old mycelial cells. The endochitinase activity increased 12-fold between 6 and 12 h and thereafter practically remained unchanged up to 24 h. A reverse trend in the chitinolytic activities was observed during the mycelium-yeast transition. Isoelectrofocussing (pH range 3.5-10) of mixed membrane fraction free of particulate fraction of parent and morphological (Y-5, yeast-form) mutant cells separated endochitinase and N-acetylglucosaminidase activity into two pH ranges, viz. 4.3-5.7 and 6.1-7.7, respectively. The predominant N-acetylglucosaminidase activity observed at pH 6.9 and 7.1 for the parent strain membrane fraction was undetected in the mutant preparation. The results suggested that the membrane-bound (either tightly or loosely) chitinolytic enzymes, particularly, N-acetylglucosaminidase, significantly contributed to the morphological changes in B. poitrasii.  相似文献   

4.
Factors affecting germ tube formation in Candida albicans at suboptimal temperatures were investigated. Candida albicans formed germ tubes between 22 and 30 degrees C in solution when incubated without shaking, in the presence of bicarbonate (2 mg mL-1). Other conditions depended on the inducer used. Proline could induce germ tube formation optimally only when its concentration was between 200 and 400 mM. A concentration of 0.05 mM N-acetylglucosamine was sufficient to induce germ tube formation. N-Acetylglucosamine could induce germ tube formation at 30 but not at 25 degrees C. N-Acetylglucosamine induced germ tube formation was most reproducible when the cells were first starved by incubation in water for 16-24 h at 20 degrees C. Germ tubes induced by proline could be formed at pH values between 3.8 and 9.0 at 30 degrees C, but only between 7.0 and 7.5 at 25 degrees C. The addition of 0.05 to 5 mM glucose to a 5 mM proline induction solution allowed germ tube formation at 30 but not at 25 degrees C. Glucose (400 mM) did not suppress germ tube formation at 30 degrees C but only 5 mM was sufficient to cause a 65% suppression at 25 degrees C. The results show the importance of CO2 and (or) bicarbonate to the induction of germ tube formation and are consistent with the metabolism of the inducer.  相似文献   

5.
Effect of calcium ion uptake on Candida albicans morphology   总被引:1,自引:0,他引:1  
In liquid culture using a synthetic medium, added magnesium but not calcium was required for exponential growth of Candida albicans yeast cells. However, medium without added divalent cations supported 2-3 generations of yeast growth or germ tube induction. The addition of calcium ions (1.0 mM) at any stage during the induction of germ tube formation caused reversion to a yeast mode of growth, in contrast to the effect of zinc and cobalt ions which were toxic to all growth. Inhibition of germ tube formation by calcium was not observed in the presence of either magnesium (10 microM) or manganese (100 microM). The presence of either of these ions caused inhibition of 45Ca uptake in yeast cultures. We conclude that unrestricted calcium uptake resulted in the specific inhibition of C. albicans mycelial growth, indicating a critical role for calcium in the regulation of C. albicans morphogenesis.  相似文献   

6.
Experimental parameters for isolation and regeneration of protoplasts from the mycelial and yeast form cells of the dimorphic zygomycete Benjamininiella poitrasii are reported. Using a chitosanase containing preparation from Streptomyces sp. MCl we obtained protoplasts after 5 h incubation with a yield of 2+/-0.3 x 10(6) ml(-1) and 3+/-0.4 x 10(7) ml(-1) for the mycelial and yeast form, respectively. During regeneration under conditions triggering dimorphism the two morphological forms were observed after 36 h. Initially, for 10-12 h only an irregular mass was formed as a result of deregulated cell wall synthesis. Among the tested inhibitors influencing cell wall metabolism, chitin metabolism inhibitors showed distinctive effects on the regeneration of protoplasts suggesting that the respective enzymes significantly contribute to determining the morphogenesis of the dimorphic fungus B. poitrasii.  相似文献   

7.
Theanine was formed from glutamic acid and ethylamine by coupling the reaction of glutamine synthetase (GS) of Pseudomonas taetrolens Y-30 with sugar fermentation of baker's yeast cells as an ATP-regeneration system. Theanine formation was stimulated by the addition of Mn2+ to the mixture for the coupling. The addition of Mg2+ was less effective. In a mixture containing a larger amount of yeast cells with a fixed level of GS, glucose (the energy source) was consumed rapidly, resulting in a decrease in the final yield of theanine. On the other hand, an increase in GS amounts increased theanine formation in a mixture with a fixed amount of yeast cells. High concentrations of ethylamine enhanced theanine formation whereas inhibited yeast fermentation of sugar and the two contrary effects of ethylamine caused a high yield of theanine based on glucose consumed. In an improved reaction mixture containing 200 mM sodium glutamate, 1,200 mM ethylamine, 300 mM glucose, 50 mM potassium phosphate buffer (pH 7.0), 5 mM MnCl2, 5 mM AMP, 100 units/ml GS, and 60 mg/ml yeast cells, approximately 170 mM theanine was formed in 48 h.  相似文献   

8.
The kinetics of the development of the mycelial form of Sporothrix schenckii from yeast cells and conidia in a minimal basal medium with glucose at pH 4.0 and 25 °C were established. Germ tube formation was used as the index of germination for both yeast cells and conidia. Yeast cells were first observed to develop germ tubes after 3 h of incubation, reaching 92±5%, after 12 h of incubation. Germ tubes were first detected in conidia after 9 h of incubation, and 12 h after inoculation 92±6% of the conidia had germ tubes. After 24 h of incubation, fully developed, sporulating mycelia were observed from both yeast cells and conidia. A delay in germ tube formation from yeast cells was observed when But2cAMP(10 mM) and But2cGMP (10 mM) were added to the medium. Also the addition of caffeine, a cyclic nucleotide phosphodiesterase inhibitor, inhibited the yeast to mycelial transition. Conidial germination into the mycelial form was also inhibited when cAMP, But2cAMP and caffeine were added to the medium. These results suggest the possible involvement of cyclic nucleotides in the control of dimorphism in S. schenckii.  相似文献   

9.
Ethanol-induced germ tube formation in Candida albicans   总被引:1,自引:0,他引:1  
Ethanol is the first reported compound which can induce germ tube formation in Candida albicans without the addition of any nitrogen-containing nutrients. Conditions controlling induction of germ tubes in C. albicans by ethanol were investigated. Ethanol (17.1 mM) in buffered salts solution containing sodium bicarbonate induced 70 to 80% of yeast phase cells of C. albicans to form germ tubes. Germ tubes could be induced by ethanol (0.08 to 340 mM) at temperatures ranging from 29 to 41 degrees C (optimum 37 degrees C) and at pH values ranging from 3.0 to 8.0 (optimum 5.75). The germ tubes averaged 11 micron in length after 6 h at 37 degrees C. The percentage of cells forming germ tubes decreased as the concentration of cells in the induction solution was increased above 4 X 10(5) cells ml-1. Germ tubes first appeared 45 to 60 min after continuous exposure to ethanol at 37 degrees C and all cells which formed germ tubes did so by 2 h. Germ tube length decreased as the pH was increased but was independent of the concentration of ethanol. Oxygen was required for germ tube formation. In addition to ethanol, 1-propanol, 2-propanol, 1-butanol and acetic acid could induce germ tube formation, whereas methanol could not. These results indicate that the cells must mobilize their endogenous nitrogen and probably carbohydrate reserves in order to initiate formation of germ tubes. The evidence is inconclusive as to whether ethanol itself must be metabolized for germ tube induction to occur, although it is not thought to act by a nonspecific interaction with the cell membrane.  相似文献   

10.
Yoon HY  Hwang SH  Lee EY  Kim TU  Cho EH  Cho SW 《Biochimie》2001,83(9):907-913
Incubation of glutamate dehydrogenase isoproteins (GDH I and GDH II) from bovine brains with perphenazine resulted in a time-dependent loss of enzyme activity. 2-Oxoglutarate and NADH, separately or together, gave partial but not complete protection against the inhibition. Although there were no detectable differences between GDH I and GDH II in inhibition by perphenazine in the absence of ADP, the sensitivities to the inhibition by the drug were significantly distinct for the two isoproteins in the presence of ADP. Low concentrations of ADP (0.05-0.20 mM) did not interfere with the inhibition of GDH I and GDH II by perphenazine. However, in the presence of high concentrations of ADP (0.5-1.0 mM), inhibitory effects of perphenazine on GDH isoproteins were significantly diminished as determined by enzyme kinetics and quantitative affinity chromatography on perphenazine-Sepharose. GDH I was more sensitively reacted with ADP than GDH II on the inhibition by perphenazine. Since physiological ADP levels can vary from 0.05 to > 1.0 mM depending on the rate of oxidative phosphorylation, our results suggest a possibility that two types of GDHs are differently regulated by the antipsychotic actions of perphenazine depending on the physiological concentrations of ADP. GTP and L-leucine, other well-known allosteric regulators, did not affect the inhibitory actions of perphenazine on bovine brain GDH isoproteins.  相似文献   

11.
Unbudded singlets from exponentially growing yeast cells of Sporothrix schenckii were harvested, selected by filtration and allowed to form germ tubes in a basal medium with glucose at pH 4.0 and 25 degrees C. These conditions supported only the development of the mycelial form of S. schenckii in a reproducible manner which allowed further analysis of the early cellular events occurring during the yeast-to-mycelium transition. The relationship between macromolecular synthesis (DNA and RNA synthesis) and nuclear division, hyphal growth and septum formation were investigated during germ tube formation. RNA synthesis started 0 to 3 h after the induction of germ tube formation, followed by DNA synthesis and the first nuclear division, which took place between 3 and 6 h. Germ tube formation followed nuclear division and was first evidenced 6 h after the induction of germ tube formation, but was not completed until 12 h after inoculation. Septation was first observed in these germ tubes at the mother cell-germ tube junction 6 h after induction. Addition of hydroxyurea, an inhibitor of DNA synthesis, to the medium, also inhibited nuclear division and germ tube growth, suggesting that these processes in S. schenckii are dependent upon DNA synthesis.  相似文献   

12.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

13.
Kinetic parameters of glutamate dehydrogenase (GDH, EC 1.4.1.2) for glutamate were determined in periportal and pericentral zones of adult male and female rat liver lobules under normal fed conditions and after starvation for 24 h. GDH activity was measured as formazan production over time against a range of glutamate concentrations in serial cryostat sections using image analysis. Captured gray value images were transformed to absorbance images and local initial velocities (Vini) were calculated. A hyperbolic function was used to describe the relationship between substrate concentration and local Vini. Under fed conditions, Vmax values were similar in male and female rats (8±2 and 16±2 μmol min−1 cm−3 liver tissue in periportal and pericentral zones, respectively). Starvation increased Vmax, especially in pericentral zones of females (to 27±1 μmol min−1 cm−3 liver tissue). Under fed conditions, the affinity of GDH for glutamate was similar in male and female rats (2.5±0.5 mM and 3.5±0.8 mM in periportal and pericentral zones, respectively). Starvation had no effect on Km values in male rats, but in female rats affinity for glutamate decreased significantly in both zones (Km values of 4.0±0.1 mM and 8.6±0.8 mM, respectively). These local changes in the kinetic parameters of GDH indicate that conversion of glutamate to α-oxoglutarate cannot be predicted on the basis of GDH concentrations or zero-order activity in the different zones of liver lobules alone.  相似文献   

14.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   

15.
A cold-labile glutamate dehydrogenase (GDH, EC 1.4.1.3) has been purified to homogeneity from the crude extracts of Azospirillum brasilense. The purified enzyme shows a dual coenzyme specificity, and both the NADPH and NADH-dependent activities are equally cold-sensitive. The enzyme is highly specific for the substrates 2-oxoglutarate and glutamate. Kinetic studies with GDH indicate that the enzyme is primarily designed to catalyse the reductive amination of 2-oxoglutarate. The NADP+-linked activity of GDH showed Km values 2.5 X 10(-4) M and 1.0 X 10(-2) M for 2-oxoglutarate and glutamate respectively. NAD+-linked activity of GDH could be demonstrated only for the amination of 2-oxoglutarate but not for the deamination of glutamate. The Lineweaver-Burk plot with ammonia as substrate for NADPH-dependent activity shows a biphasic curve, indicating two apparent Km values (0.38 mM and 100 mM) for ammonia; the same plot for NADH-dependent activity shows only one apparent Km value (66 mM) for ammonia. The NADPH-dependent activity shows an optimum pH from 8.5 to 8.6 in Tris/HCl buffer, whereas in potassium phosphate buffer the activity shows a plateau from pH 8.4 to 10.0. At high pH (greater than 9.5) amino acids in general strongly inhibit the reductive amination reaction by their competition with 2-oxoglutarate for the binding site on GDH. The native enzyme has a Mr = 285000 +/- 20000 and appears to be composed of six identical subunits of Mr = 48000 +/- 2000. The GDH level in A. brasilense is strongly regulated by the nitrogen source in the growth medium.  相似文献   

16.
Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ~4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ~80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ~20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ~3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at <15% of wild type. Analysis of (13)C-enrichment of glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism.  相似文献   

17.
Protein chemical studies of glutamate dehydrogenase isoproteins (GDH I and GDH II) from bovine brain reveal that one cystein residue is accessible for reaction with thiol-modifying reagent. Reaction of the two types of GDH isoproteins with p-chloromercuribenzoic acid resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo first-order kinetics with the second-order rate constant of 83 M(-1) s(-1) and 75 M(-1) s(-1) for GDH I and GDH II, respectively. The inactivation was partially prevented by preincubation of the glutamate dehydrogenase isoproteins with NADH. A combination of 10 mM 2-oxoglutarate with 2 mM NADH gave complete protection against the inactivation. There were no significant differences between the two glutamate dehydrogenase isoproteins in their sensitivities to inactivation by p-chloromercuribenzoic indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Allosteric effectors such as ADP and GTP had no effects on the inactivation of glutamate dehydrogenase isoproteins by thiol-modifying reagents. By a combination of peptide mapping analysis and labeling with [14C] p-chloromercuribenzoic acid, a reactive cystein residue was identified as Cys323 in the overall sequence. The cysteine residue was clearly identical to sequences of other GDH species known.  相似文献   

18.
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo.  相似文献   

19.
A number of strains of Candida albicans were tested for germ tube formation after induction by N-acetyl-D-glucosamine (GlcNAc) and other simple (proline, glucose plus glutamine) or complex (serum) compounds. A proportion of strains (high responders) were induced to form germ tubes evolving to true hyphae by GlcNAc alone or by proline or glucose plus glutamine mixture. The majority of strains were low responders because they could be induced only by serum or GlcNAc-serum medium. Two strains were found to be nonresponders: they grew as pseudohyphae in serum. Despite minor quantitative differences, all strains efficiently utilized GlcNAc for growth under the yeast form at 28 degrees C. They also had comparable active, inducible, and constitutive uptake systems for GlcNAc. During germ tube formation in GlcNAc, the inducible uptake system was modulated, as expected from induction and decay of GlcNAc kinase. Uranyl acetate, at a concentration of 0.01 mM, inhibited both GlcNAc uptake and germ tube formation and was reversed by phosphates. Germinating and nongerminating cells differed in the rapidity and extent of GlcNAc incorporation into acid-insoluble and alkali-acid-insoluble cell fractions. During germ tube formation induced by proline, GlcNAc was almost totally incorporated into the acid-insoluble fraction after 60 min. Moreover, hyphal development on induction by either GlcNAc or proline was characterized by an apparent "uncoupling" between protein and polysaccharide metabolism, the ratio between the two main cellular constituents falling from more than 1 to less than 0.5 after 270 min of development. The data suggest that utilization of the inducer for wall synthesis is a determinant of germ tube formation C. albicans but that the nature and extent of inducer uptake is not a key event for this phenomenon to occur.  相似文献   

20.
Yeast cells of Candida albicans were brought to germ tube formation and hyphal growth in liquid synthetic medium. The behaviour of mitochondria and mitochondrial nucleoids (mt-nucleoids) during morphological conversion was examined by fluorescence staining with 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide (DASPMI) and 4',6-diamidino-2-phenylindole (DAPI). Parent yeast cells possessed one or very few branched giant mitochondria which were stained intensely with DASPMI. When a germ tube emerged from the parent cell, one end of a giant mitochondrion extended into the germ tube and developed into the elongated form. In mycelia, apical hyphal cells contained giant mitochondria, whereas older hyphal compartments near the parent cells were vacuolated and possessed small, peripherally located mitochondria. The vacuolated hyphal compartments resynthesized cytoplasm before producing branches and contained giant mitochondria. The cytological model for germ tube formation and hyphal growth proposed by Gow and Gooday (1984) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号