首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that a decrease in facilitative glucose transporter (GLUT1) expression and reduced glucose transport trigger apoptosis in the murine blastocyst. Inhibition of GLUT1 expression either by high glucose conditions or with antisense oligodeoxynucleotides significantly lowers protein expression and function of GLUT1 and as a result induces a high rate of apoptosis at the blastocyst stage. Similar to wild-type mice, embryos from streptozotocin-induced diabetic Bax -/- mice experienced a significant decrease in glucose transport compared with embryos from non-diabetic Bax -/- mice. However, despite this decrease, these blastocysts demonstrate significantly fewer apoptotic nuclei as compared with blastocysts from hyperglycemic wild-type mice. This decrease in preimplantation apoptosis correlates with a decrease in resorptions and malformations among the infants of the hyperglycemic Bax -/- mice versus the Bax +/+ and +/- mice. These findings suggest that hyperglycemia by decreasing glucose transport acts as a cell death signal to trigger a BAX-dependent apoptotic cascade in the murine blastocyst. This work also supports the hypothesis that increased apoptosis at a blastocyst stage because of maternal hyperglycemia may result in loss of key progenitor cells and manifest as a resorption or malformation, two adverse pregnancy outcomes more common in diabetic women.  相似文献   

2.
Amphiregulin (Ar) is an EGF receptor ligand that functions to modulate the growth of both normal and malignant epithelial cells. We asked whether mouse preimplantation embryos express Ar, and if so, what the function of Ar is during preimplantation development. We used RT-PCR to show expression of Ar mRNA in mouse blastocysts, and using a polyclonal anti-Ar antibody and indirect immunofluorescence, we detected the presence of Ar protein in morula- and blastocyst-stage embryos. Ar protein was present in both the cytoplasm and nucleus in both morulae- and blastocyst-stage embryos, which is similar to Ar distribution in other cell types. Embryos cultured in Ar developed into blastocysts more quickly and also exhibited increased cell numbers compared to control embryos. In addition, 4-cell stage embryos cultured in an antisense Ar phosphorothioate-modified oligodeoxynucleotide (S-oligo) for 48 hr exhibited slower rates of blastocyst formation and reduced embryo cell numbers compared to embryos exposed to a random control S-oligo. TGF-α significantly improved blastocyst formation, but not cell numbers, for embryos cultured in the antisense Ar S-oligo. From these observations, we propose that Ar may function as an autocrine growth factor for mouse preimplantation embryos by promoting blastocyst formation and embryo cell number. We also propose that blastocyst formation is stimulated by Ar and TGF-α, while Ar appears to exert a greater stimulatory effect on cell proliferation than does TGF-α in these embryos. Mol. Reprod. Dev. 47:271–283, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Murine preimplantation embryos exposed to hyperglycemia experience decreased glucose transport, and overexpression of the proapoptotic protein BAX, leading to increased apoptosis. These changes may account for the increased rates of miscarriages and malformations seen in women with diabetes mellitus. To test whether p53 expression is necessary for hyperglycemia-induced apoptosis, p53+/+, +/-, -/- embryos were obtained by superovulation. Two-cell embryos were cultured to a blastocyst stage in 52 mM D- or L-glucose. Apoptosis was detected using terminal dUTP nick end labeling (TUNEL) assays. In vivo studies were performed in the same manner using blastocysts recovered from streptozotocin-induced diabetic mothers. Both in vitro and in vivo studies showed that wildtype embryos had a significantly higher percentage of TUNEL-positive nuclei than p53+/- and -/- embryos. To test whether p53 is upstream of BAX, immunofluorescent confocal microscopy and immunoprecipitation/ immunoblotting were performed on blastocysts cultured in high vs. control glucose conditions. Blastocysts from p53+/+ mice exhibited increased BAX staining vs. p53+/- and -/- embryos. Next, to determine whether a decrease in glucose transport was upstream or downstream of p53, deoxyglucose transport was measured in individual blastocysts from p53+/+ and +/- diabetic vs. nondiabetic mice. Embryos from diabetic p53+/- mice exhibit a 44% decrease in glucose transport, similar to the 38% decrease seen in embryos from diabetic p53+/+ mice. Taken together, these results strongly indicate that p53 plays a role in hyperglycemia-induced apoptosis, upstream of BAX overexpression and downstream of the decrease in glucose transport experienced by the mouse preimplantation embryo.  相似文献   

4.
Analysis of apoptosis in the preimplantation bovine embryo using TUNEL   总被引:1,自引:0,他引:1  
The occurrence of cell death by apoptosis was examined in blastocyst and preblastocyst stage bovine embryos. Zygotes were obtained by in vitro maturation and in vitro fertilization of oocytes from abattoir derived ovaries. Two-cell to hatched blastocyst stage embryos were stained with propidium iodide to label all nuclei and by terminal deoxynucleotidyl transferase (TdT)-mediated d-UTP nick end-labelling (TUNEL) to label apoptotic nuclei, and were analysed by epifluorescent and confocal microscopy. Apoptosis was first observed at the 9-16-cell stage of development, decreasing at the morula stage before increasing at the blastocyst stage. Apoptotic dead cell index in day 7 blastocysts was negatively correlated with the total number of cells; the percentage of dead cells ranged from approximately 1 to 10% and occurred predominantly within the inner cell mass. In addition, apoptotic dead cell index was significantly higher (P < 0.05) in blastocysts cultured (from the two-cell stage) in the presence of 10% fetal bovine serum compared with those developed in serum-free medium. Embryos selected for early cleavage at < 29 h after fertilization and cultured together until the blastocyst stage showed a significantly lower rate of apoptosis (P < 0.01) compared with slower cleaving embryos.  相似文献   

5.
6.
Target-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) are receptors that facilitate vesicle and target membrane fusion. Syntaxin 4 is the t-SNARE critical for insulin-stimulated glucose transporter 4 (GLUT4)-plasma membrane fusion in adipocytes. GLUT8 is a novel IGF-I/insulin-regulated glucose transporter expressed in the mouse blastocyst. Similar to GLUT4, GLUT8 translocates to the plasma membrane to increase glucose uptake at a stage in development when glucose serves as the main substrate. Any decrease in GLUT8 cell surface expression results in increased apoptosis and pregnancy loss. Previous studies have also shown that disruption of the syntaxin 4 (Stx4a) gene results in early embryonic lethality before embryonic d 7.5. We have now demonstrated that syntaxin 4 protein is localized predominantly to the apical plasma membrane of the murine blastocyst. Stx4a inheritance, as detected by protein expression, occurs with the expected Mendelian frequency up to embryonic d 4.5. In parallel, 22% of the blastocysts from Stx4a+/- matings had no significant insulin-stimulated translocation of GLUT8 whereas 77% displayed either partial or complete translocation to the apical plasma membrane. This difference in GLUT8 translocation directly correlated with one-third of blastocysts from Stx4a+/- mating having reduced rates of insulin-stimulated glucose uptake and 67% with wild-type rates. These data demonstrate that the lack of syntaxin 4 expression results in abnormal movement of GLUT8 in response to insulin, decreased insulin-stimulated glucose uptake, and increased apoptosis. Thus, syntaxin 4 functions as the necessary t-SNARE protein responsible for correct fusion of the GLUT8-containing vesicle with the plasma membrane in the mouse blastocyst.  相似文献   

7.
The success of Somatic cell nuclear transfer (SCNT) primarily depends on the extent of reprogramming of donor cells genome. The error of reprogramming may lead to inappropriate expression of embryonic genes at any stage of development. Under the present study the relative expression of different genes related to pluripotency (Oct-4 and Nanog), growth factors (IGF-2 and IGF-2R) and DNA methyltransferase gene (Dnmt-1) was evaluated in SCNT embryos at 8–16 cells, morula and blastocyst stages as compared to IVF group. In SCNT, significantly higher degree of relative expression was observed for Oct-4 in morula (1.41) and blastocysts (1.14) as compared to 8–16 cells (referral stage) whereas in IVF, a lower expression was observed at morula (0.82) stage. The expression of Nanog in SCNT embryos was increased significantly in morula (2.23) and decreased subsequently in blastocyst (0.56), whereas it was increased significantly from 8 to 16 cells to morula (1.62) and blastocyst (4.5) of IVF group. The IGF-2 and IGF-2R showed significantly higher expression rates in morula and blastocysts of SCNT (6.56, 5.90 and 1.11, 1.4) and IVF (8.69, 8.25 and 2.96, 3.91) embryos, respectively as compared to referral stage. The expression of Dnmt-1 was significantly higher in SCNT morula (1.29) and blastocyst (1.15) however in IVF, it was similar in 8–16 cells stage and morula but, higher in blastocyst (1.58). The dissimilar pattern of gene expression of SCNT might be a consequence of incomplete reprogramming of donor nucleus which resulted into lower blastocyst rate of SCNT as compared to IVF embryos.  相似文献   

8.
Developmental potential of isolated blastomeres from early murine embryos   总被引:1,自引:0,他引:1  
Experiments were designed to evaluate the effect of blastomere separation on blastocoele formation and development of viable fetuses. Two-cell and four-cell murine embryos were dissociated into individual blastomeres and cultured to the blastocyst stage. For embryos of both stages, zona removal and blastomere separation reduced (P<0.05) the number of viable embryos at the onset of culture and reduced (P<0.01) the frequency of continuation of development of blastomeres to the blastocyst stage. Attempts to repeatedly split two-cell stage embryos decreased in vitro development to blastocysts. The number of cells in two-cell embryos that were cultured to blastocyst was not different for control (64.8 +/- 11.5) or for two-cell embryos cultured without the zona pellucida (60.9 +/- 10.1) but was reduced (P<0.01) for one-half embryos that were cultured to blastocysts (35.6 +/- 10.6). The cell number of blastocysts obtained from dissociated four-cell (1/4) embryos (17.4 +/- 1.4) was similarly reduced (P<0.01). In vivo development was assessed after cultured embryos were transferred to the uteri of day 3 pseudopregnant females. Zona free intact embryos (2/36, 6%) and zona free half embryos (7/36; 19%) developed less frequently (P<0.05) than intact controls (45/100). Noncultured morula briefly exposed to pronase to thin the zona had similar impaired development. Embryos with thinned zona or no zona developed less frequently (21/82, 2/72 respectively, P<0.05) than nonpronase-treated controls (50/83).  相似文献   

9.
We tested the effects of the amino acids and vitamins in minimum essential medium (MEM) and Eagle's medium (BME) on pig blastocyst development and nuclei number. Embryos were recovered either 5 or 6 d after first detected estrus and were cultured for 96 h in U-bottomed wells (0.2 ml). In Experiment 1, addition of MEM amino acids and vitamins to modified Krebs-Ringer bicarbonate (MKRB) medium containing either bovine serum albumin (BSA, 4 mg/ml) or lamb serum (10%, v/v) resulted in fewer (P<0.001) nuclei and smaller (P<0.05) embryo volumes at the end of culture as compared to embryos cultured in MKRB without MEM-supplements. Addition of MEM-amino acids without glutamine (Experiment II) depressed blastocyst volume and rate of hatching, but glutamine (2 mM) had no effect on embryo development. Dialysis (molecular weight > 12,000 retained) of fetal bovine serum (Experiment III) did not affect blastocyst expansion but reduced (P<0.05) the number of nuclei/blastocyst at the end of the culture. Embryos cultured in MKRB with dialyzed serum and the amino acids and vitamins in BME were smaller (P<0.05) and had fewer (P<0.05) nuclei than embryos cultured in MKRB with dialyzed serum but without the BME-supplements. We conclude that, under our culture conditions, MEM and BME amino acids and vitamins are detrimental to the development of early pig blastocysts and that this effect is not due to glutamine. Also, dialysis of fetal bovine serum removes some component(s) that are important for cell division by pig embryos, but it does not affect blastocyst expansion.  相似文献   

10.
Embryo implantation in humans and rodents is a highly invasive yet tightly controlled process involving extracellular matrix (ECM) degradation. Matrix metalloproteinase 9 (MMP-9) has been implicated as the major facilitator of this ECM degradation. MMP-9 is expressed by the embryo's trophoblast cells, whereas tissue inhibitor of metalloproteinases 3 (TIMP-3) is expressed by the maternal uterine cells immediately adjacent to the trophoblast. We examined the functional roles of MMP-9 and TIMP-3 during in vitro ECM degradation by mouse embryos. Blastocysts were treated with either MMP-9 antisense or sense oligonucleotides and incubated on an ECM gel. The extent of ECM degradation exhibited by the blastocysts due to proteinase secretion was quantified. Embryos exposed to MMP-9 antisense oligonucleotides exhibited reduced ECM-degrading activity as compared with controls, and this reduced activity was correlated with the level of MMP-9 secreted by the embryos. The functional role of TIMP-3 was then examined by incubating blastocysts on an ECM gel that had been impregnated with various amounts of TIMP-3. In a dose-dependent manner, increases in TIMP-3 resulted in a reduction in ECM degradation and were correlated with diminished MMP-9 activity. These results provide important functional evidence that in vitro ECM degradation is regulated by embryo-derived MMP-9 and ECM-derived TIMP-3.  相似文献   

11.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

12.
13.
Studies addressing the effects of supraphysiological levels of IGF-1 on oocyte developmental competence are relevant for unravelling conditions resulting in high bioavailability of IGF-1, such as the polycystic ovary syndrome (PCOS). This study investigated the effects of supraphysiological levels of IGF-1 during in vivo folliculogenesis on the morula-blastocyst transition in bovine embryos. Compacted morulae were non-surgically collected and frozen for subsequent mRNA expression analysis (IGF1R, IGBP3, TP53, AKT1, SLC2A1, SLC2A3, and SLC2A8), or underwent confocal microscopy analysis for protein localization (IGF1R and TP53), or were cultured in vitro for 24 h. In vitro-formed blastocysts were subjected to differential cell staining. The mRNA expression of SLC2A8 was higher in morulae collected from cows treated with IGF-1. Both IGF1R and TP53 protein were present in the plasma membrane and cytoplasm. IGF-1 treatment did not affect protein localization of both IGF1R and TP53. In vitro-formed blastocysts derived from morulae recovered from IGF-1-treated cows displayed a higher number of cells in the inner cell mass (ICM). Total cell number (TCN) of in vitro-formed blastocysts was not affected. A higher mean ICM/TCN proportion was observed in in vitro-formed blastocysts derived from morulae collected from cows treated with IGF-1. The percentage of in vitro-formed blastocysts displaying a low ICM/TCN proportion was decreased by IGF-1 treatment. In vitro-formed blastocysts with a high ICM/TCN proportion were only detected in IGF-1 treated cows. Results show that even a short in vivo exposure of oocytes to a supraphysiological IGF-1 microenvironment can increase ICM cell proliferation in vitro during the morula to blastocyst transition.  相似文献   

14.
Culture of bovine embryos with insulin-like growth factor-1 (IGF-1) can improve development to the blastocyst stage and embryo survival following transfer to heat-stressed, lactating dairy cows. Two experiments were conducted to determine whether IGF-1 could improve embryo survival and development at Day 14 after ovulation. In Experiment 1, non-lactating Holstein cows (n=58) were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced in vitro and cultured with or without 100ng/mL IGF-1. At Day 7 after expected ovulation (Day 0), groups of 7-12 embryos were randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and the presence or absence of an embryonic disc was recorded. Recovered embryos were cultured individually for 24h to determine interferon-tau (IFN-tau) secretion. There was no effect of IGF-1 on embryo recovery rate, embryo length or IFN-tau secretion. In Experiment 2, non-lactating (n=56) and lactating (n=35) Holstein cows were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced as described in Experiment 1. At Day 7 after expected ovulation (Day 0), a single embryo was randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and IFN-tau secretion were determined as in Experiment 1. Recovery rate at Day 14 tended (P=0.1) to be higher for recipients that received IGF-1 treated embryos compared to control embryos (43.2% versus 26.1%, respectively). There was no effect of IGF-1 on embryo length or IFN-tau secretion. In conclusion, results suggest that exposure to IGF-1 through Days 7-8 of development does not enhance capacity of embryos to prevent luteolysis. Results of the single embryo-transfer experiment suggested that IGF-1 treatment might affect embryo survival post-transfer as early as Day 14 after ovulation. Further experimentation is warranted to verify this finding.  相似文献   

15.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

16.
Proteins secreted by mouse blastocysts developing in vitro were compared to these from blastocysts developing in utero to determine if a simple medium supporting blastocyst development also supports secreted protein expression. In-vivo embryos were collected on days 3, 4, or 5 of pregnancy and incubated in 35S-methionine to produce conditioned medium containing released, labeled proteins. Embryos for culture were collected on day 3 and after 48 or 72 h labeled conditioned medium was produced. Labeled proteins were separated by two-dimensional electrophoresis and compared using a digital image analysis system. Day 3 embryos did not release proteins in detectable amounts, although synthesis of intracellular proteins was substantial. Day-4 and -5 blastocysts released proteins in increasing amount and complexity, consistent with previous results. When day-3 embryos were cultured in medium containing 4 mg/ml BSA for 48 h, secreted protein patterns were similar but not identical to those of day-5 uterine blastocysts. Although most of the proteins produced by uterine blastocysts were secreted by cultured embryos, differences were found in the relative quantities of certain proteins. Neither crystallized BSA nor polyvinyl alcohol at 4 mg/ml supported development of protein secretion as well as the crude fraction-V BSA. Blastocysts restricted to the oviduct also exhibited quantitative differences in protein secretion patterns compared to uterine blastocysts. Thus, although blastocyst development and the expression of many secreted proteins are supported outside the uterus, the full pattern of secretion characteristic of the peri-implantation embryo may be dependent on specific uterine influences.  相似文献   

17.
18.
Glucose uptake by cells in response to stimulation with either IGF-1 or insulin is associated with the translocation of GLUT (glucose transporter) proteins from intracellular cytoplasmic compartments to the plasma membrane. In response to such stimulation, GLUT4 and GLUT1 translocation to the plasma membrane is triggered through an increase in their exocytosis involving phospholipase D (PLD) activation, disrupting the recycling of intracellular GLUT-containing vesicles between the plasma membrane and internal compartments. In skeletal muscle, insulin resistance is observed in association with an increase of dipalmitoyl-phosphatidylcholine, which is also known to interact with PLD. Based on evidence that the recycling process is important for GLUT translocation, we decided to address whether dipalmitoyl-phosphatidylcholine, a non-translocatable phospholipid known to alter the recycling of intracellular vesicles and to interact with PLD, can be involved in glucose metabolism. We show that an acute change in phospholipid composition, by addition of dipalmitoyl-phophatidylcholine, leads to GLUT1 translocation to the plasma membrane in conjunction to an increase of Akt and GSK3beta phosphorylation, which are sensitive to PI3K and PLD inhibitors. Moreover, we also show that long-term change in phospholipid composition disrupts both the IGF-1 signalling pathway and GLUT1 partitioning within the cells.  相似文献   

19.
Although mouse oocytes and cleavage-stage embryos prefer pyruvate and lactate for metabolic fuels, they do take up and metabolize glucose. Indeed, presentation of glucose during the cleavage stages is required for subsequent blastocyst formation, which normally relies on uptake and metabolism of large amounts of glucose. Expression of the facilitative glucose transporter GLUT1 was examined using immunohistochemistry and Western blotting, and in polyspermic oocytes, metabolism of glucose was measured and compared with that of pyruvate and glutamine. GLUT1 was observed in all oocytes and embryos, and membrane and vesicular staining was present. Additionally, however, in polyspermic oocytes, the most intense staining was in the pronuclei, and this nuclear staining persisted in cleaving normal embryos. Furthermore, GLUT1 expression appeared to be up-regulated both in nuclei and plasma membranes following culture of oocytes in the absence of glucose. In polyspermic oocytes, the metabolism of glucose, but not of pyruvate or glutamine, was directly proportional to the number of pronuclei formed. After compaction, nuclear staining diminished, and GLUT1 localized to basolateral membranes of the outer cells and trophectoderm. In blastocysts, a weak but uniform staining of inner-cell-mass plasma membranes was apparent. The results are discussed in terms of potential roles for GLUT1 in pronuclei of oocytes and zygotes, nuclei of cleavage-stage embryos, and a transepithelial transport function for GLUT1, probably coupled with GLUT3, in compacted embryos and blastocysts.  相似文献   

20.
Insulin and the insulin-like growth factors, IGF-I and IGF-II, have been reported to exert a mitogenic effect on the preimplantation mammalian embryo. Furthermore, it has been proposed that loss of imprinting of the insulin-like growth factor II receptor gene and the consequent over-production of IGF-II may be involved in the aetiology of the Enlarged Offspring Syndrome, which occurs as an artefact of in vitro embryo production. We have previously shown that apoptosis occurs in the preimplantation bovine embryo and is influenced by in vitro culture conditions. We have therefore sought to establish the effects of insulin, IGF-I and IGF-II on apoptosis and cell proliferation in bovine blastocysts in vitro. Zygotes, obtained by in vitro maturation and fertilization of follicular oocytes, were cultured to blastocysts, with or without exogenous growth factors. Embryos were stained with propidium iodide to label all nuclei and by TUNEL to label apoptotic nuclei and analyzed by epifluorescent and confocal microscopy. IGF-I and IGF-II, but not insulin, were found to increase the proportion of embryos which formed blastocysts. Insulin decreased the incidence of apoptosis without affecting blastocyst cell number. IGF-I acted to decrease apoptosis and increase total cell number and IGF-II increased cell number alone. These data suggest roles for insulin and the IGFs as mitogens and/or apoptotic survival factors during early bovine development. Perturbation of IGF-II regulated growth may be involved in fetal oversize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号