首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
利用叶表皮离析、扫描电镜以及常规石蜡切片法对烟台补血草[ Limonium franchetii( Debx.) Kuntze]叶片盐腺的分布和结构特征及其发育过程进行了观察.结果表明:烟台补血草叶片上、下表皮均有盐腺分布,上、下表皮的盐腺密度分别为7.57和8.09 mm-2,同一时期叶片上表皮盐腺密度略小于下表皮.烟台补血草的成熟盐腺是由20个细胞构成的复合结构,其中,中央有4个分泌细胞,每个分泌细胞外侧均伴有1个长方形的毗邻细胞,再向外依次包围着4个内杯状细胞和4个外杯状细胞,靠近叶肉细胞处还有4个收集细胞,收集细胞与盐腺的其他细胞同源;在4个分泌细胞顶端的角质层中央各有1个小孔,称为泌盐孔.烟台补血草盐腺发育过程依次经历原表皮细胞期、2细胞期、4细胞期、8细胞期、16细胞期和20细胞期6个阶段,由1个单独的原表皮细胞发育而成,发育过程中细胞均进行垂周分裂;另外,同一时期的叶片存在盐腺发育不同步的现象.根据观察结果推测烟台补血草主要通过泌盐孔L向外泌盐.  相似文献   

2.
利用扫描电镜和石蜡切片法对黄花补血草叶片进行解剖学研究,观察叶片营养器官中盐腺的分布、密度、结构及发育过程。结果表明:黄花补血草叶片上、下表皮有大量的盐腺分布,且下表皮的盐腺密度比上表皮的多,盐腺周围有7~9个表皮细胞呈辐射状排列;盐腺的成熟结构由12个细胞构成,中央有4个分泌细胞,每个分泌细胞都有一个明显的分泌孔,是盐分泌出的通道;分泌细胞外侧伴有4个弧形的毗邻细胞围成一圈;盐腺内部靠近叶肉细胞处有4个收集细胞。研究认为,黄花补血草盐腺由一个表皮原始细胞发育而成,分别经历单细胞时期、2细胞时期、4细胞时期、8细胞时期和12细胞时期的不同发育阶段。  相似文献   

3.
四种补血草属植物叶片泌盐结构的扫描电镜观察   总被引:10,自引:1,他引:9  
周玲玲  刘萍  陆嘉惠 《植物研究》2006,26(6):667-671
利用扫描电镜技术,对4种补血草属植物大叶补血草(Limonium gmelinii (Willd.) Kuntze)、耳叶补血草(Limoniu otolepis (Schrenk) Kuntze)、繁枝补血草(Limonium myrianthum (Schrenk) Kuntze)和簇枝补血草(Limonium auream)的叶表面进行了研究,以探讨植物微形态结构与生态环境的关系。结果表明,这4种植物的上下表皮都分布有盐腺,且上表皮的盐腺密度大于下表皮,盐腺的基本结构相同,多由20个细胞构成,其中4个分泌细胞顶端的角质层中央有一小孔,植物体靠盐腺的泌盐孔泌盐。但4种植物在盐腺的密度、盐腺的大小、盐腺与周围表皮细胞的位置等方面存在差异。植物在对盐碱生境的长期适应过程中,促使其强烈地分化出泌盐结构,因而,具有明显的生态适应性。  相似文献   

4.
四种野生盐生植物解剖结构与抗旱耐盐性   总被引:5,自引:0,他引:5  
为了解盐生植物的解剖结构与抗盐性和抗旱性的关系,以二色补血草、草木樨,艾蒿、猪毛菜为材料,通过徒手切片和显微观察了植物的叶、茎、腺毛、分泌腔、气孔、表皮毛分布和结构。结果显示:猪毛菜的气孔密度低、气孔器小,表皮毛密集,叶面积小,抗旱能力最强;艾蒿的表皮毛长、浓密,气孔密度较低、气孔较小,抗旱性较强;二色补血草表皮毛短、密集,但气孔密度较高、气孔器较大,抗旱性较差;草木樨表皮毛短、稀疏,气孔密度较高、气孔也较大,抗旱性最差;二色补血草有发达的内分泌和外分泌组织,根系吸收的大量盐份积累在分泌腔中,并通过盐腺排出叶片,是排盐植物,耐盐性强;猪毛菜具有发达的内分泌组织,有大量分泌腔,且有粘液细胞和大量薄壁细胞,是耐盐植物,耐盐性强;草木樨具有较多的盐腺,是泌盐植物,耐盐性较强;艾蒿无盐腺等分泌组织。猪毛菜可以作为盐碱地"生物脱盐器"。  相似文献   

5.
NaCl对中华补血草叶片盐腺发育及其泌盐速率的影响   总被引:6,自引:0,他引:6  
丁烽  王宝山 《西北植物学报》2006,26(8):1593-1599
以中华补血草(Limonium sinenseKuntze)为实验材料,研究了不同浓度NaCl处理对其生长、盐腺发育及泌盐速率的影响.结果显示:(1)随着NaCl浓度的升高,植株干重和鲜重均先显著升高后逐渐下降,当NaCl处理浓度为100 mmol/L时,植株干、鲜重达到最大;(2)与对照相比,300 mmol/L NaCl处理下盐腺的分泌细胞及平均直径差异不显著,而在1002、00 mmol/L的NaCl处理下显著增大;(3)随着NaCl浓度的升高,盐腺密度显著升高且叶片上表面盐腺总数明显高于对照,单个盐腺的泌盐速率和叶片整体泌盐速率均显著升高.结果表明,100~200 mmol/L NaCl处理可显著促进中华补血草盐腺的发育及泌盐能力,300 mmol/L以上NaCl处理对盐腺的直径影响不显著,但可显著促进盐腺的泌盐能力.  相似文献   

6.
二色补血草叶片泌盐结构的扫描电镜观察   总被引:13,自引:1,他引:13  
对二色补血草盐泉结构进行比较研究,发现二色补血草叶下表皮具有花型盐腺,这些盐腺是由基细胞和帽细胞构成,植物体靠盐腺的泌盐孔和基细胞破碎释盐,表明二色补血草具有演化较高级的双重泌盐结构,是二色补血草能在盐碱地生长而不受盐害的主要原因。  相似文献   

7.
新疆2种盐生补血草营养器官的解剖学研究   总被引:5,自引:0,他引:5  
周玲玲  刘萍  王军 《西北植物学报》2007,27(6):1127-1133
采用叶片离析法和石蜡切片法,对生长在新疆盐渍环境中的大叶补血草[Limonium gmelinii(Willd.) Kuntze]和耳叶补血草[Limoniumotolepis(Schrenk) Kuntze]的营养器官解剖学特征进行了观察研究.结果显示,2种补血草属典型泌盐植物,茎和叶片表皮上分布有多细胞组成的盐腺;叶表皮细胞排列紧密,其外切向壁增厚,表皮外还被有厚的角质层;上下表皮都有气孔,气孔与表皮细胞平齐,为不等型气孔;其中大叶补血草为异面叶,而耳叶补血草为等面叶.2种补血草茎中都散生有多轮维管束;大叶补血草根中还有大量通气组织等.研究结果表明,2种补血草的解剖结构表现出与其生境相适应的特征.  相似文献   

8.
新疆四种补血草属植物叶片的解剖学研究   总被引:1,自引:0,他引:1  
周玲玲  宋晓丽 《广西植物》2007,27(4):537-542
利用叶片离析法和石蜡切片法研究了补血草属4种植物叶片的形态结构。结果表明:(1)4种植物的叶片有许多共同的结构适应特征,表皮细胞排列紧密,表面有厚的角质层;气孔类型均为不等型,气孔位置为平置或略微下陷;上下表皮还具有多细胞构成的盐腺;栅栏组织发达,多为等面叶;存在粘液细胞和单宁细胞;机械组织和维管组织都不发达等。(2)不同种间有不同的结构适应特征,如表皮细胞的形状、大小、垂周壁饰样,气孔密度,盐腺密度,叶片厚度和栅栏组织厚度等。通过叶的结构特征反映出盐生植物与旱生植物的不同。  相似文献   

9.
木香薷腺毛形态结构发生发育规律的研究   总被引:1,自引:0,他引:1  
采用常规石蜡切片法及扫描电镜技术对木香薷(Elsholtzia stauntoni Benth)腺毛发生发育及其规律进行了研究。结果表明:木香薷表皮上主要有两种表皮毛:无分泌细胞的表皮毛与有分泌细胞的腺毛。前者包括单细胞乳头状毛、2~3细胞管状毛、分枝状毛及多细胞管状毛;后者包括头状腺毛与盾状腺毛。成熟头状腺毛头部由1、2或4个分泌细胞构成,头部呈圆球形或半圆球形;成熟盾状腺毛头部由8~12个分泌细胞构成,分泌细胞横向扩展形成盾状头部。木香薷腺毛主要在茎端幼叶处大量发生,从茎端第一对幼叶处开始产生;从幼叶期到成熟期均有腺毛发生,大部分腺毛在幼叶期发生发育,只有极少部分在叶的成熟期进行发生发育。  相似文献   

10.
大米草的盐腺在植物体的分布,除根、根茎、茎、叶鞘的近轴面以及内稃没有外,其他所有气生部分皆具有,尤其以叶片最多。盐腺由两个细胞组成,大的基细胞和小的圆顶状的帽细胞。帽细胞位于基细胞颈状突起上面。两者都具有浓稠的细胞质、大的细胞核多数线粒体以及少数其他细胞器。基细胞具有遍布整个细胞的壁突起和折叠的隔膜系统,将细胞质分隔。帽细胞的显著特征是核仁明显,染色质遍及整个核质并沿核膜分布。基细胞肩部和底部与表皮细胞和叶肉细胞之间没有角质层隔开,而基细胞与表皮细胞和帽细胞邻接的壁上有明显的胞间联丝。大米草盐腺的发育可能与唐氏米草(S.townsendii)相同;其泌盐途径可能是叶米草(S.foliosa)与唐氏米草两者兼有之。  相似文献   

11.
Halophytes complete their life cycles in saline environments. The recretohalophyte Limonium bicolor has evolved a specialized salt secretory structure,the salt gland, which excretes Na+to avoid salt damage. Typical L. bicolor salt glands consist of 16 cells with four fluorescent foci and four secretory pores. Here, we describe a special type of salt gland at the base of the L. bicolor leaf petiole named bracelet salt glands due to their beaded-bracelet-like shape of blue auto-fluoresc...  相似文献   

12.
13.
《Flora》2014,209(3-4):185-190
Some salt-tolerant plants belonging to the Poaceae possess bicellular salt glands that excrete salt-containing water. To clarify the excretion process from the outer cell of the bicellular salt gland (cap cell), unwashed and washed fresh leaves of Rhodes grass (Chloris gayana Kunth), Poaceae, were cryo-fixed rapidly, and the surface fine structures of the leaves were observed by cryo-scanning electron microscopy with high resolution. The cuticle on the cap cell did not have any pores or signs of rupturing. The cuticle of the cap cells lacks the epicuticular waxes that cover most surfaces of leaf epidermis. After excreted droplets on the salt glands were completely removed by washing with water, re-excreted droplets were observed 3 h later. These findings indicate that the bicellular salt glands of Rhodes grass excrete salt-containing water continuously through the wax-free cuticle of the cap cell without disintegration of the cuticular structure.  相似文献   

14.
Summary The salt gland in Tamarix is a complex of eight cells composed of two inner, vacuolate, collecting cells and six outer, densely cytoplasmic, secretory cells. The secretory cells are completely enclosed by a cuticular layer except along part of the walls between the collecting cells and the inner secretory cell. This non-cuticularized wall region is termed the transfusion are (Ruhland, 1915) and numerous plasmodesmata connect the inner secretory cells with the collecting cells in this area. Plasmodesmata also connect the collecting cells with the adjacent mesophyll cells.There are numerous mitochondria in the secretory cells and in different glands they show wide variation in form. In some glands wall protuberances extend into the secretory cells forming a labyrinth-like structure; however, in other glands the protuberances are not extensively developed. Numerous small vacuoles are found in some glands and these generally are distributed around the periphery of the secretory cells in association with the wall protuberances. Further, an unusual structure or interfacial apparatus is located along the anticlinal walls of the inner secretory cells. The general structure of the gland including the cuticular encasement, connecting plasmodesmata, interfacial apparatus, and variations in mitochondria, vacuoles, and wall structures are discussed in relation to general glandular function.  相似文献   

15.
The effects of salt uptake on the morphology and ultrastructure of leaf salt glands were investigated in Aeluropus littoralis plants grown for two months in the presence of 400 mM NaCl. The salt gland is composed of two linked cells, as observed in some other studied Poaceae species. The cap cell, which protrudes from the leaf surface, is smaller than the basal cell, which is embedded in the leaf mesophyll tissues and bears the former. The cuticle over the cap cell is frequently separated from the cell wall to form a cavity where salts accumulate prior to excretion. The basal cell cytoplasm contains an extensive intricate or partitioning membrane system that is probably involved in the excretion process, which is absent from the cap cell. The intricate membrane system seems to be elongated and heavily loaded with salt. The presence of 400 mM NaCl induced the disappearance of the collecting chamber over the glands and an increase in the number of vacuoles and their size in both gland cells. In the basal cell, salt greatly increased both the density and size of the intricate membrane system. The electron density of both gland cells observed under salt treatment reflects a high activity. All these changes probably constitute special adaptations for dealing with salt accumulation in the leaves. Despite the high salt concentration used, no serious damage occurred in A. littoralis salt gland ultrastructure, which consolidates the assumption that they are naturally designated for this purpose.  相似文献   

16.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号