首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptors for insulin and insulin-like growth factor I (IGF-I) are two closely related integral membrane glycoproteins involved in signalling of cell growth and metabolism. We have used the unique paradigm of pairs of Burkitt lymphoma cell lines (BLO2, BL30, BL41) with or without Epstein-Barr Virus (EBV) infection and cells transfected with EBV-related genes to examine effects of EBV on expression of these receptors at the gene and protein functional level. In BL30 and BL41 cells, EBV infection increased surface insulin binding and total receptor number by 2-and 18-fold, respectively. By contrast, EBV infection decreased total IGF-I receptors by 29 to 87% in all three cell lines. In general, there was a correlation between total receptor concentration and the level of insulin or IGF-I receptor mRNAs, although in one cell line insulin binding increased while receptor mRNA levels decreased slightly, suggesting posttranslational effects. BL41 cells transfected with a vector expressing the EBV latent membrane protein (LMP) exhibited a 2.6- to 3.2-fold increase in insulin receptor expression, whereas cells transfected with EBNA-2 (one of the EBV nuclear antigens) alone exhibited no effect. However, EBNA-2 appears to be required for the EBV effect on insulin receptor expression since cells infected with a mutant virus, P3JHRI, which lacks the EBNA-2 gene failed to show an increase in insulin receptor number. These data indicate that EBV infection of lymphocytes increases expression of insulin receptors while simultaneously decreasing expression of IGF-I receptors. The magnitude and sometimes even the direction of change, depends on host cell factors. A maximal increase in insulin receptors appears to require the coordinate action of several of the EBV proteins including LMP and EBNA-2. © 1993 Wiley-Liss, Inc.  相似文献   

2.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung (FRL) cells is increased approximately 2 to 3-fold within 18 h of retinoic acid addition. Analysis of 125I-EGF binding assays at 0 C reveals approximately 25,000 receptors per cell, while analysis of growth factor binding to retinoic acid-treated cells demonstrates an increase in receptor levels to approximately 70,000 receptors per cell with no detectable changes in receptor affinities. We show by immunoprecipitation of 35S-methionine labeled EGF receptors that retinoic acid addition produces an increase in the accumulation of EGF receptor protein. Using brief pulses of 35S-methionine, an increase in EGF receptor synthesis can be identified within 3 h after retinoic acid addition. These results are the first to demonstrate that a retinoic acid-induced increase in 125I-EGF binding capacity is due to increased EGF receptor protein synthesis. Also, we find that a transient decrease in the rate of EGF receptor turnover occurs when retinoic acid is initially added to FRL cells. On the basis of our data, we conclude that the retinoic acid-induced accumulation of EGF receptors in FRL cells is primarily due to increased receptor synthesis. The effect of retinoic acid on EGF receptor turnover may be a secondary factor, influencing the rate at which receptors accumulate.  相似文献   

3.
Recycling of tumor necrosis factor-alpha receptor in MCF-7 cells   总被引:1,自引:0,他引:1  
Kinetics of regulation of membrane receptors for tumor necrosis factor-alpha (TNF) in human breast adenocarcinoma MCF-7 cells was investigated. When MCF-7 cells were incubated with radioiodinated human recombinant TNF, they bound TNF specifically and accumulated it intracellularly. Preincubation of cells with native TNF up to 1 x 10(-9) M for 12 h stimulated specific binding of TNF, indicating that concentrations of membrane receptors for TNF were regulated by the ligand. Accumulation of radioactivity in cells incubated with [125I]TNF proceeded at a constant rate for up to 24 h. Kinetics of binding and internalization of TNF were similar in the presence and absence of protein synthesis for at least 1 h, suggesting that the TNF receptor was either replenished from an intracellular pool of receptors or was recycled (reutilized) during the course of TNF internalization. Data were analyzed kinetically by fitting equations of compartmental models of ligand-cell interactions with and without the term for receptor recycling. Fits were obtained only for the model with receptor recycling; absence of the term for receptor recycling resulted in physically impossible best-fit parameter values. Analysis of the best-fit parameters indicated that both internalization and recycling of the receptor were stimulated by the ligand.  相似文献   

4.
The cell dynamics of the receptor for tumor necrosis factor (TNF) were examined in TNF-sensitive KYM cells derived from human myosarcoma. With receptor synthesis inhibited by cycloheximide, the half-life of the surface TNF receptor was 2 h in the absence of TNF and 30 min in its presence, suggesting that the TNF receptor is non-recycling and that its internalization is accelerated by TNF. During cell incubation with TNF receptor degradation suppressed by chloroquine, the number of surface TNF receptors remained approximately constant, but the total number of surface and internal TNF receptors increased gradually, at 3 h reaching 1.5 times the initial number, thus suggesting continuous synthesis, externalization, internalization, and degradation of the TNF receptor in the absence of cycloheximide. On cell incubation with 125I-TNF, the intracellular quantity of the pulse-labeled TNF-receptor complex promptly increased, reaching a maximum at 20 min, and then gradually declined, thus confirming that the TNF receptor is internalized as a TNF-receptor complex in the presence of TNF. During incubations with protein synthesis suppressed by cycloheximide following surface TNF receptor digestion by trypsin, TNF receptors reappeared on the cell surface, increasing in number to a peak at 60 min and gradually decreasing, and cells previously exposed to cycloheximide with or without TNF showed no recurrence of surface TNF receptors, suggesting that the TNF receptor is non-recycling. The results of the study thus suggest that the TNF receptor is continuously internalized and degraded intracellularly by lysosomes without being recycled regardless of the presence or absence of TNF and, further, that its internalization is accelerated when it is part of the TNF-receptor complex.  相似文献   

5.
Regulation of platelet-activating factor receptors in rat Kupffer cells   总被引:1,自引:0,他引:1  
Ligand binding studies indicate that 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) down-regulates its own receptors on the plasma membrane of isolated rat Kupffer cells but has no significant effect on the binding affinity of the receptor for AGEPC. Exposure of isolated rat Kupffer cells to 10(-8) and 10(-6) M AGEPC resulted in a rapid, time-dependent reduction in the number of cell surface AGEPC receptors to a new steady state concentration (54.1 +/- 5.0% and 38.6 +/- 5.4% of control, respectively). During the observation period (6 h), the half-time of surface AGEPC receptors was about 60 and 45 min in the presence of 10(-8) and 10(-6) M AGEPC, respectively. Both the rate of loss and the maximal loss of the receptors were dependent upon the AGEPC concentration. With receptor synthesis inhibited by cycloheximide in the absence of AGEPC, the half-time of the surface AGEPC receptor was about 4 h, suggesting that AGEPC receptors are not recycled and that the loss of AGEPC receptors from the plasma membrane is accelerated by AGEPC binding. When incubated with Kupffer cells at 37 degrees C for 3 h, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (1.0 microM), an inactive metabolite of AGEPC, did not cause the loss of AGEPC receptors. Under the same conditions, AGEPC antagonists such as BN52021 (2 x 10(-5) M) or U66985 (2 x 10(-5) M) alone had no effect (97.0 +/- 3.9% of control for BN52021) or only a relatively slight effect (78.4 +/- 1.8% for U66985) on the number of surface AGEPC receptors. However, AGEPC antagonists inhibited the AGEPC-induced down-regulation of AGEPC receptors in a concentration-dependent manner, suggesting that the AGEPC-induced down-regulation of AGEPC receptors is a receptor-mediated process. The AGEPC-mediated decrease in receptor number on rat Kupffer cells is reversible. Upon removing AGEPC from the culture medium, about 67% of the lost receptors were replaced within 2 h. Cycloheximide, an inhibitor of protein synthesis, prevented the restoration of the AGEPC receptors. Similar results were obtained when Kupffer cells were incubated with Pronase followed by removing Pronase and reincubating the cells with or without cycloheximide. These observations suggest that the restored AGEPC receptor is newly synthesized rather than recycled. The present study demonstrates that under non-stimulatory (i.e. in the absence of AGEPC) conditions AGEPC receptors are lost from the plasma membrane and are reformed in the cells continuously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Regulation of the uterine expression of estrogen and progesterone receptors was studied in 20 three-month-old lambs that were not treated or treated with estradiol- 17beta. Determinations of receptors were performed by binding assays in the nuclear and cytosolic fractions, receptor mRNAs by solution hybridization, and estrogen receptor protein by an enzyme-immunoassay. Estradiol treatment decreased the receptor binding capacity of both receptors and the levels of immunoreactive estrogen receptor 12 h after injection in the absence of decreased receptor mRNAs, suggesting that the initial decrease is due to degradation of the proteins or that mRNAs are translated into new receptor proteins at a reduced rate. The mRNA levels increased after estradiol treatment suggesting that the replenishment phase consists of synthesis of new receptors rather than recycling of inactivated receptors.  相似文献   

7.
Cell membrane potential changes follow Epstein-Barr virus binding   总被引:1,自引:0,他引:1  
Upon binding to receptor-bearing target cells, viruses cause cell membrane potential changes. Epstein-Barr Virus causes a biphasic membrane potential change in receptor-bearing B lymphocytes but not receptor-negative T lymphocytes, as measured by flow cytometry or cyanine dye uptake. Membrane potential changes from EBV binding to receptor-bearing cells resemble electrical responses of other cells following ligand binding to transmembrane receptors.  相似文献   

8.
The effect of the iron chelator, desferrioxamine, on transferrin binding, growth rates and the cell cycle was investigated in the human leukaemic cell line, K562. At all concentrations of the chelator (2-50 microM) binding of 125I-transferrin was increased by 24 h and reached a maximum at 72-96 h. Maximum binding (6-8-fold increased) occurred in cells treated with 20 microM-desferrioxamine, in contrast with control cells which, at 96 h, showed a 50% decrease over initial binding. Scatchard analysis at 4 degrees C showed that this increased binding was due to an increase in the number of receptors, as the Kd was similar in induced (1.8 nM) and control (1.5 nM) cells. After 96 h cells, cultured with 20 and 50 microM-desferrioxamine accumulated 59Fe from bovine transferrin at over twice the rate found with control cells, reflecting the increase in transferrin receptors. Although iron uptake was unimpaired by the chelator there was a dose-dependent inhibition of cell growth, with control cells completing three divisions in 96 h and those in 10 microM-desferrioxamine only two divisions. At the highest concentration (50 microM), cell division was abrogated although cell viability was maintained (85%). In contrast, DNA synthesis was not markedly affected, except at 50 microM-desferrioxamine when incorporation of [3H]thymidine was 52% of that in control cells. Flow cytometry revealed that there was a progressive accumulation of the cells in the active phases of their cycle (S, G2 + M). Desferrioxamine may increase transferrin receptors in two ways: by chelating a regulatory pool of iron within the cell, and by arresting cells in S phase when receptors are maximally expressed.  相似文献   

9.
Transferrin receptor expression in the monocyte-like cell line U937 was investigated during in vitro cultivation. U937 cells expressed a single class of high affinity surface transferrin receptors (KD approximately 4 nM), with apparent subunit Mr of 90-95,000 Da as determined by SDS-reducing PAGE. [125I]-transferrin binding studies on detergent-solubilized cells revealed that half to two-thirds of the total functional binding sites were located intracellularly. Radioligand binding, immunofluorescence and flow cytometry studies were performed on intact, detergent-solubilized, or saponin-permeabilized cells, using either transferrin or the anti-transferrin receptor monoclonal antibody OKT9 IgG. These studies demonstrated that functional and antigenic transferrin receptor levels were maximal on cells 24 h after subculture at low density and declined during the culture period. Scatchard analysis of radioligand binding data suggested that the decline in functional transferrin binding sites resulted from a decline in the number of available receptors. These results demonstrate that in U937 cells there is a density-dependent regulation of transferrin receptor expression, resulting in a loss of functional and antigenic receptors from both plasma membrane and intracellular locations.  相似文献   

10.
We have investigated the simultaneous regulation of cell surface distribution and ligand binding of the asialoglycoprotein (ASGP) receptor and the transferrin receptor in a hepatoma cell line by phorbol esters. One hour exposure to phorbol esters causes a redistribution of both receptors to the cell interior as shown by radioligand binding at 4 degrees C and selective immunoprecipitation from the plasma membrane. This effect is temperature- and dose-dependent and is not seen with 4-alpha-phorbol, an inactive tumor promoter. The mechanism and kinetics of the ASGP receptor response to phorbol esters appears to differ from that of the transferrin receptor in this cell line. Within the first 10 min there is a decrease in binding of iodinated ligands for both receptors to the HepG2 cell surface. For the transferrin receptor this results from a net internalization of receptor molecules from the plasma membrane pool, while for the ASGP receptor this decrease is accounted for by a 3.5-fold reduction in ligand binding affinity (6.6 X 10(-8) M to 24.0 X 10(-8) M), with essentially no change in the number of ASGP receptors recoverable from the plasma membrane pool by immunoprecipitation. The altered affinity of the ASGP-R is transient; the Kd returns to control levels by 20 min of continued exposure to the agent. The transferrin receptor shows no change in binding affinity during the course of exposure to phorbol esters. ASGP receptors in cells exposed to phorbol esters for 1 h maintain their competence to deliver exogenous ligand to intracellular sites of degradation and to participate in the recycling pathway of receptor-mediated endocytosis, although at a lower rate than in control cells. We conclude that under identical conditions phorbol esters modulate the binding capacity of two receptors at the cell surface by separate mechanisms. Furthermore, the transient nature of the altered ASGP-R binding affinity suggests that at least two mechanisms, receptor redistribution as well as decreased binding affinity, are operative in the modulation of ASGP-R cell surface binding during the first hour of exposure to the phorbol esters.  相似文献   

11.
Epstein-Barr virus (EBV) is invariably present in undifferentiated nasopharyngeal carcinomas, is found sporadically in other carcinomas, and replicates in the differentiated layer of the tongue epithelium in lesions of oral hairy leukoplakia. However, it is not clear how frequently or by what mechanism EBV infects epithelial cells normally. Here, we report that a human epithelial cell line, 293, can be stably infected by EBV that has been genetically marked with a selectable gene. We show that 293 cells express a relatively low level of CD21, that binding of fluorescein-labeled EBV to 293 cells can be detected, and that both the binding of virus to cells and infection can be blocked with antibodies specific for CD21. Two proteins known to form complexes with CD21 on the surface of lymphoid cells, CD35 and CD19, could not be detected at the surface of 293 cells. All infected clones of 293 cells exhibited tight latency with a pattern of gene expression similar to that of type II latency, but productive EBV replication and release of infectious virus could be induced inefficiently by forced expression of the lytic transactivators, R and Z. Low levels of mRNA specific for the transforming membrane protein of EBV, LMP-1, as well as for LMP-2, were detected; however, LMP-1 protein was either undetectable or near the limit of detection at less than 5% of the level typical of EBV-transformed B cells. A slight increase in expression of the receptor for epidermal growth factor, which can be induced in epithelial cells by LMP-1, was detected at the cell surface with two EBV-infected 293 cell clones. These results show that low levels of surface CD21 can support infection of an epithelial cell line by EBV. The results also raise the possibility that in a normal infection of epithelial cells by EBV, the LMP-1 protein is not expressed at levels that are high enough to be oncogenic and that there might be differences in the cells of EBV-associated epithelial cancers that have arisen to allow for elevated expression of LMP-1.  相似文献   

12.
The degradation of insulin receptors was studied in cultured Zajdela hepatoma cells (ZHC). Receptor distribution within the cell was evaluated by estimating: i) surface receptor level on entire cells, ii) total cell receptors solubilized by Triton from cell membranes and iii) intracellular receptors solubilized from cells whose surface receptors had been inactivated with trypsin. In the absence of insulin, 80-90% of the insulin binding sites were located on the cell surface. When insulin was added, a rapid decrease of surface receptors was observed. After 2 h, their level was reduced nearly by half; this reduction was accounted for by an actual receptor loss from the cell without an increase in the intracellular pool. These results indicate that insulin enhanced the rate of receptor degradation within the cell. Basal receptor inactivation was studied by using tunicamycin which inhibits new receptor synthesis. The surface receptor number was decreased with a half-life of 7 h, while the level of internal sites remained unchanged. Both basal and insulin-activated receptor degradation were markedly slowed down by chloroquine or dansylcadaverine, indicating the importance of endocytic pathways in this process. Similarly, when de novo protein glycosylation was inhibited for 24 h by tunicamycin, both basal and insulin-activated receptor inactivation were precluded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
With the use of [3H]heparin, we recently demonstrated that Leishmania donovani promastigotes express a cell-surface receptor that is specific for the glycosaminoglycan heparin (Mukhopadhyay et al. 1989, The Biochemical Journal, 264, 517-525.). Treatment of the parasite with trypsin abolishes 75-90% of this [3H]heparin-binding activity. When trypsinized promastigotes were resuspended in fresh culture medium in the absence and presence of cycloheximide (10 micrograms/ml), approximately 25-30% of the original heparin-binding capacity was restored within 1 hr, indicating that recruitment of receptors from an internal pool occurred without de novo protein synthesis. Scatchard analysis of the regenerated receptor revealed that the number of regenerated binding sites per cell was 2.3 x 10(5); these sites have a binding affinity of 6.7 x 10(-7) M. Like the native heparin receptors on the surface of freshly isolated cells, the receptors recruited after trypsinization are also highly specific for heparin, as a 25-fold excess of four other glycosaminoglycans displaced less than 10% of bound [3H]heparin from the trypsinized cells. The structural requirements of the ligand heparin, namely the number of monosaccharide units and degree of sulfation, were compared for both the native and regenerated receptor: for both receptors, oversulfated polysaccharide heparin fragments of at least six to eight sugar residues were most efficient at displacing [3H]heparin. The concentrations of oligosaccharide fragments required to displace 50% of [3H]heparin were 0.32 and 0.035 microM for the hexa- and octasaccharides, respectively. Colloidal gold-labeled heparin was bound to promastigotes and visualized by electron microscopy. This analysis revealed that the heparin bound almost exclusively to the flagella of control cells (not subjected to trypsin) and those which had regenerated receptor after trypsinization. The physiological significance of this heparin-binding activity on the surface of promastigotes is discussed.  相似文献   

14.
The effects of various phorbol esters on the interaction of human cells with recombinant human tumor necrosis factor-alpha (rTNF-alpha) was investigated. Preexposure of several different types of cells with only biologically active tumor promoter, i.e. 4 beta-phorbol 12-myristate 13-acetate (PMA), inhibited the specific binding of rTNF-alpha to its receptor. The reduction in specific binding of TNF-alpha was observed only by PMA but not with several other phorbol esters tested. 1-oleoyl-2-acetylglycerol, which is an analogue of the natural protein kinase C activator, diacylglycerol, was active in down-regulating TNF-alpha receptors but only at 1000 times concentration than PMA. Scatchard analysis of the binding data on U-937 cells revealed that PMA caused a decrease in high affinity cell surface receptor number (approximately 8300 versus approximately 2500 binding sites/cell) without any significant change in the dissociation constant (0.38 nM versus 0.32 nM). This decrease in receptor number is dependent on temperature, the time of exposure, and dose of PMA. Greater than 95% of the specific binding of 125I-TNF-alpha could be abolished within 10 min by preexposure of cells to 10 nM PMA at 37 degrees C. The down-regulation of receptors by PMA occurred only at 37 degrees C but not at 4 degrees C, suggesting a probable internalization of the receptors. The specific binding of TNF-alpha to detergent-solubilized cell extracts remained unchanged after exposure of cells to PMA. The rates of dissociation of TNF-alpha from the cell surface and the rate of internalization was not significantly affected by PMA, but the rate of disappearance from cell interior and its appearance into the medium was slightly enhanced by PMA. PMA did not alter the rate of degradation of the TNF-alpha nor cause the shedding of receptors into the medium. Approximately 70% of TNF-alpha cell surface receptors could be regenerated within 16 h after PMA removal. These results suggest the involvement of PMA-activated protein kinase C in down-regulation and redistribution of TNF-alpha receptors.  相似文献   

15.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung cells is decreased by approximately 50% following 24-h dexamethasone treatment. Ligand binding assays identified an average of 30,000 receptors per cell in untreated FRL cells, while analysis of dexamethasone treated cells showed a decrease to about 16,000 receptors per cell. No substantial changes in receptor affinities were detected. Immunoprecipitation of 35S-methionine-labeled EGF receptor protein demonstrated a 50% decrease in total EGF receptor protein after 24-h dexamethasone treatment. Brief pulse labeling with 35S-methionine showed that the reduction in total EGF receptor protein content was due to a decrease in EGF receptor synthesis. Receptor synthesis declined about 25% after 1 h of dexamethasone treatment and at 3 h, EGF receptor synthesis was maximally decreased to nearly 50% that of cells not exposed to dexamethasone. Dexamethasone treatment was also effective in reducing EGF receptor synthesis in cells pretreated with retinoic acid, an agent which enhances receptor synthesis. These data are the first to document a dexamethasone-induced decrease in EGF receptor synthesis. Furthermore, these findings may provide a plausible mechanism by which dexamethasone could regulate EGF responsiveness.  相似文献   

16.
17.
The chemoattractant mediating cell aggregation in the slime mold Polysphondylium violaceum is N-propionyl-gamma-L-glutamyl-L-ornithine-delta-lactam ethylester (glorin). Here we examine the binding properties of tritiated glorin to intact P. violaceum cells. Scatchard analysis of binding data yielded slightly curvilinear plots with Kd values in the range of 20 and 100 nM. The number of glorin receptors increased from 35,000 in the vegetative stage to 45,000 per cell during aggregation. Later, during culmination receptor numbers decreased to undetectable levels (less than 1000). The receptor binding kinetics show binding equilibrium within 30 s at 0 degrees C, and ligand dissociation occurs from two kinetically distinct receptors whose half-times were 2 s for 72% of the bound glorin and 28 s for the remainder. The enzymatic degradation of glorin did not affect binding data during incubations of up to 1 min at 0 degrees C. Two glorinase activities were observed. An ornithine delta-lactam cleaving activity with a Km of ca. 10(-4) M and a propionic acid removing activity (Km 10(-5) M), both of which were detected mainly on the cell surface. Cleavage of the lactam occurred at a higher rate than removal of propionic acid. Lactam-cleaved glorin showed no chemotactic activity nor did it bind to cell-surface glorin receptors. Cell-surface-bound glorinase activity and glorin-induced cGMP synthesis were developmentally regulated, peaking at aggregation. In the most sensitive stage half-maximal responses (cGMP synthesis, chemotaxis, light-scattering) were elicited in the 10-100 nM range. Neither cAMP synthesis nor glorin-induced glorin synthesis was observed. Guanine nucleotides specifically modulated glorin receptor binding on isolated membranes, and, conversely, glorin modulated GTP gamma S binding to membrane preparations. Our results support the notion that glorin mediates chemotactic cell aggregation in P. violaceum acting via cell-surface receptors, G-proteins, and cGMP accumulation.  相似文献   

18.
The regeneration of surface anionic groups in mouse peritoneal macrophages was investigated by electron microscopy, using cationized ferritin (CF) as a tool for the localization and evaluation of negative charge density on the cell surface. In vitro interaction of living macrophages with CF resulted in removal of most anionic groups, either by concentration of their receptor sites to a part of the membrane which is subsequently internalized, or by detachment of the aggregated label from the surface. After incubation of macrophages lacking surface anionic groups in tissue culture medium without the ligand, regeneration of the binding capacity for CF took place within 3 h. The first regenerated parts of the membrane can be visualized within 1 h on the upper part of the adherent cells; there is a discontinuous coating of ferritin, with the lateral regions of the plasmalemma free of label. The attached CF particles on the regenerated membrane are closer to the membrane and their density is considerably higher than on the normal control macrophages. The results indicate that the turnover of the plasmalemma is regional and not dispersed; the mechanism involved is insertion of membrane patches into the pre-existing plasma membrane.  相似文献   

19.
Upon binding insulin at the plasma membrane, the insulin receptor internalizes into the endosomal compartment of the cell with a half-time of approximately 10 min. Our earlier work demonstrated that receptor inactivation (loss of insulin binding capacity) is a regulated process. Long term treatment of cultured cells with insulin or the glucocorticoid dexamethasone increases or decreases, respectively, the rate constant for insulin receptor inactivation (Knutson, V. P., Ronnett, G. V., and Lane, M. D. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2822-2826). In these studies, monolayer cultures of 3T3-C2 fibroblasts were chronically treated with insulin or dexamethasone. Subsequently, the surface receptors were labeled with the photoactivatable cross-linking agent 125I-labeled 2-(p-azidosalicylamido)ethyl-1,3'- dithiopropionate -insulin. Following equilibration of the radiolabeled receptor between the plasma membrane and internal pools, the steady-state rate constant for receptor recycling was determined by quantitating the rate at which internal radiolabeled receptor was inserted into the plasma membrane. The steady-state rate constant for this recycling process was the same in control, insulin-treated, or steroid-treated cells (t1/2 = 2h). In contrast, the rate constant for receptor internalization was regulated; the half-times were 10 h for control cells, 5 h for insulin-treated cells, and 19 h for dexamethasone-treated cells. These changes in rate constants for internalization and inactivation lead to changes in the relative numbers of receptor molecules undergoing recycling versus inactivation. Therefore, whereas the recycling of the insulin receptor is not a regulated process, the internalization of surface receptor in the absence of bound ligand is a metabolically controlled step in receptor processing.  相似文献   

20.
Protein toxins such as shiga toxin and cholera toxin penetrate into cells by binding small molecule-based cell surface receptors localized to cholesterol and sphingolipid-rich lipid raft subdomains of cellular plasma membranes. Molecular recognition between these toxins and their receptors triggers endocytic protein uptake through endogenous membrane trafficking pathways. We report herein the synthesis of functionally related non-natural cell surface receptors comprising peptides capped with N-cholesterylglycine as the plasma membrane anchor. The peptide moieties of these receptors were based on high-affinity epitopes of anti-hemaglutinin antibodies (anti-HA), anti-Flag antibodies, and a moderate-affinity Strep Tag II peptide ligand of the streptavidin protein from Streptomyces avidini. These non-natural receptors were directly loaded into plasma membranes of Jurkat lymphocytes to display peptides from lipid rafts on the cell surface. Molecular recognition between these receptors and added cognate anti-HA, anti-Flag, or streptavidin proteins resulted in rapid clathrin-mediated endocytosis; fluorescent target proteins were completely internalized within 4-12 h of protein addition. Analysis of protein uptake by epifluorescence microscopy and flow cytometry revealed intracellular fluorescence enhancements of 100-fold to 200-fold (10 microM non-natural receptor) with typically >99% efficiency. This method enabled intracellular delivery of a functional Escherichia coli beta-galactosidase enzyme conjugated to Protein A from Staphylococcus aureus. We termed this novel delivery strategy "synthetic receptor targeting", which is an efficient method to enhance macromolecular uptake by decorating mammalian cells with chemically defined synthetic receptors that access the molecular machinery controlling the organization of cellular plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号